EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
基本信息
- 批准号:1462230
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop a novel paradigm of generative modeling for decentralized data. In the big data era, the enormous volume, and high variety and velocity of data raise new technical challenges. What can be substantially strengthened is in the area of statistical learning under the limitations imposed by distributed data collections, communication networks, and decentralized computing platforms. As an example, the size of the data can be so large in many engineering applications that a single computer cannot handle. Typical learning methods, however, expect training data to be static and can be handled by one computer. The generative modeling framework has been shown to be effective in incorporating prior knowledge and capturing statistical dependence among data residing on structured domains, e.g., time sequences for signals and spatial grids for images. These advantages suit well with data arising from natural phenomena and the needs of engineering systems. The project addresses constraints in storage and communication capacity, as well as the speed requirement of real-time analysis by advancing multi-scale statistical modeling consisting of a layer of data-level learning and a layer of model-level learning. Two doctoral students will be supported to conduct research at the interface of engineering and statistics. They will develop core methodologies, as well as practical algorithms and tools useful in a wide range of engineering disciplines.The goal of this project is to propose new approaches in statistical learning for distributed and dynamic data subject to constraints of communication networks and the decentralized architecture of computing platforms. In particular, multi-scale statistical modeling for learning from distributed and dynamic data will be advanced. At the data-level, modeling is performed at decentralized computing sites. These models serve as a highly compact description of the data, retaining key information for learning. To consolidate the models acquired at distributed sites, only the models are communicated to a primary computer node. At the primary node, learning is performed directly on the models without regenerating data. An integrated investigation will be conducted on trade-offs between data and various computing resources such as CPU and storage. This project is transformative because of the fundamental nature of the problems, the unusual formulation of problems, and the interdisciplinary approaches. The usual paradigm of learning directly from data is transformed to multi-scale learning where statistical models become learning objects themselves. A suite of tools integrating methodologies in statistics and engineering will be developed and made available.
该项目将开发出用于分散数据的新型生成建模范式。在大数据时代,大量批量以及数据的种类繁多和速度引起了新的技术挑战。在分布式数据收集,通信网络和分散计算平台所施加的局限性下,可以实质上加强的是统计学习领域。例如,在许多工程应用程序中,数据的大小可能如此之大,以至于单个计算机无法处理。但是,典型的学习方法期望培训数据是静态的,并且可以通过一台计算机处理。生成建模框架已被证明可以有效地纳入与结构化域上的数据之间的统计依赖性,例如,图像的信号和空间网格的时间序列。这些优势非常适合由自然现象和工程系统需求产生的数据。该项目通过推进由数据级学习和模型级学习层组成的多尺度统计建模来解决存储和通信能力的限制以及实时分析的速度要求。将支持两名博士生在工程和统计的界面进行研究。他们将开发核心方法论,以及实用的算法和工具在广泛的工程学科中有用。该项目的目的是提出针对分布式和动态数据的统计学习中的新方法,并受到通信网络的约束和分散的建筑的约束计算平台。特别是,将提出用于从分布式和动态数据学习的多尺度统计建模。在数据级时,建模是在分散的计算位点进行的。这些模型是对数据的高度紧凑描述,保留了关键信息以进行学习。为了巩固在分布式站点上获取的模型,仅将模型传达给主计算机节点。在主节点上,学习直接在模型上执行,而无需再生数据。 将对数据与各种计算资源(例如CPU和存储)之间的权衡进行综合调查。由于问题的基本特性,问题的异常表述以及跨学科的方法,因此该项目具有变革性。直接从数据学习的通常学习范式转变为多规模学习,统计模型本身成为学习对象。 将开发并提供一套在统计和工程中集成方法的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Li其他文献
An Assessment of Autonomous Vehicles: Traffic Impacts and Infrastructure Needs—Final Report
自动驾驶汽车评估:交通影响和基础设施需求——最终报告
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
K. Kockelman;S. Boyles;P. Stone;Daniel J. Fagnant;Rahul Patel;M. Levin;Guni Sharon;M. Simoni;Michael Albert;Hagen Fritz;Rebecca Hutchinson;P. Bansal;Gleb B. Domnenko;P. Bujanovic;Bumsik Kim;Elham Pourrahmani;Sudesh Agrawal;Tianxin Li;Josiah P. Hanna;Aqshems Nichols;Jia Li - 通讯作者:
Jia Li
SimXRD-4M: Big Simulated X-ray Diffraction Data Accelerate the Crystalline Symmetry Classification
SimXRD-4M:大量模拟 X 射线衍射数据加速晶体对称性分类
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bin Cao;Yang Liu;Zinan Zheng;Ruifeng Tan;Jia Li;Tong - 通讯作者:
Tong
The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses.
- DOI:
10.1016/j.fochx.2023.100989 - 发表时间:
2023-12-30 - 期刊:
- 影响因子:6.1
- 作者:
Shan Zhang;Shimin Wu;Qinyan Yu;Xujiang Shan;Le Chen;Yuliang Deng;Jinjie Hua;Jiayi Zhu;Qinghua Zhou;Yongwen Jiang;Haibo Yuan;Jia Li - 通讯作者:
Jia Li
Robust Jump Regressions
鲁棒跳跃回归
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jia Li;V. Todorov;George Tauchen - 通讯作者:
George Tauchen
We use these formulas and numerical simulations to examine the relative importance of di erent stages of infection and di erent chronic levels of virus to the spreading of the disease
我们使用这些公式和数值模拟来检查不同感染阶段和不同慢性病毒水平对疾病传播的相对重要性
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
J. Hyman;Jia Li;E. Stanley - 通讯作者:
E. Stanley
Jia Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Li', 18)}}的其他基金
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: studying superconductivity and ferromagnetism in 2D material heterostructures with flat energy band
职业:研究具有平坦能带的二维材料异质结构中的超导性和铁磁性
- 批准号:
2143384 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Cluster Analysis for High-Dimensional and Multi-Source Data
高维多源数据聚类分析
- 批准号:
2013905 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Statistical Learning for Image Annotation
图像标注的统计学习
- 批准号:
1521092 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Parametric and nonparametric regressions on spot volatility
现货波动率的参数和非参数回归
- 批准号:
1326819 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Estimation and Inference Methods for Continuous-Time Models
连续时间模型的估计和推理方法
- 批准号:
1227448 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Modeling of Mosquitoes Carrying Transgenes or Genetically Modified Bacteria in Preventing the Transmission of Mosquito-Borne Diseases
携带转基因或转基因细菌的蚊子模型以预防蚊媒疾病的传播
- 批准号:
1118150 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
The Second International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems; October 2009; Huntsville, Alabama
第二届生物系统群体数学建模与分析国际会议;
- 批准号:
0931213 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Essential Roles of Receptor-Like Kinases in Brassinosteroid and Cell-Death Control Signaling Pathways
受体样激酶在油菜素类固醇和细胞死亡控制信号通路中的重要作用
- 批准号:
0849206 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
- 批准号:
1462311 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
- 批准号:
1462363 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant