Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
基本信息
- 批准号:2118985
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In grand-challenge scientific applications, the enormous amount of data produced by the sensing and instrumentation infrastructure often loses its value after a small window of time. Thus, to obtain actionable intelligence from the data, streaming analytics, i.e., the ability to analyze in-motion data, is increasingly becoming critical. Moreover, modern computing systems are highly heterogeneous, consisting of processors, accelerators, and large high-bandwidth external memories. To develop scalable streaming analytics applications, challenges across the full system stack -- from application to target platform -- need to be addressed. In this regard, this planning project is identifying a comprehensive set of research challenges, goals, key innovations and timelines in algorithms and applications, systems software, hardware-software co-design, and computer architecture. This project is bringing together a community of application developers and users, computer scientists, and data scientists, whose interests lie in building streaming data science applications targeting a wide variety of scalable systems. This project is demonstrating preliminary results on how it will achieve significant cross-stack performance improvements using Privacy Preserving Streaming Graph Learning for Secure Smart Grids as the driving application.Modern data-science applications are characterized as being highly decentralized, distributed and requiring composition and orchestration between localized analytics on thousands or millions of edge platforms and massive centralized analytics in cloud/data centers, as well as requiring real-time analytics on streaming data. To enable scalable performance of grand-challenge streaming data-science applications, a framework that allows developers to seamlessly build these applications targeting a wide variety of scalable systems is needed. This planning project is conducting preliminary research towards a large proposal for developing an opensource framework, StreamWare, that will enable users to develop streaming data-science applications. This project is establishing a community of application developers and users, computer scientists, and data scientists who would serve as early adopters and developers of the StreamWare framework. In consultation with domain experts, a list of key data-science kernels for StreamWare is being generated, and their existing state-of-the-art algorithms and hardware IPs are being evaluated to identify performance limitations and opportunities for improvement. This project is also articulating the requirements of novel abstractions that can represent and operate on streaming data on heterogeneous platforms. This project uses Privacy Preserving Streaming Graph Learning for Secure Smart Grids as a motivating application to show preliminary evidence of end-to-end scalability using a novel notion of symbiotic scalability that captures the impact of StreamWare's cross-layer optimizations. The expected outcomes of this planning project include a proposal for the research activities to be carried out in the large grant, publications on the results of the survey activities and future research directions for enabling streaming data science, and curricula for future graduate and undergraduate courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在具有挑战性的科学应用中,传感和仪器基础设施产生的大量数据通常会在一小段时间后失去其价值。因此,为了从数据中获取可操作的情报,流分析(即分析动态数据的能力)变得越来越重要。此外,现代计算系统是高度异构的,由处理器、加速器和大型高带宽外部存储器组成。为了开发可扩展的流分析应用程序,需要解决整个系统堆栈(从应用程序到目标平台)的挑战。在这方面,该规划项目正在确定算法和应用、系统软件、软硬件协同设计和计算机体系结构方面的一系列全面的研究挑战、目标、关键创新和时间表。该项目汇集了应用程序开发人员和用户、计算机科学家和数据科学家的社区,他们的兴趣在于构建针对各种可扩展系统的流数据科学应用程序。该项目正在展示如何使用安全智能电网的隐私保护流图学习作为驱动应用程序来实现显着的跨堆栈性能改进的初步结果。现代数据科学应用程序的特点是高度分散、分布式,并且需要组合和编排数以千计或数百万个边缘平台上的本地化分析与云/数据中心中的大规模集中式分析之间的关系,以及需要对流数据进行实时分析。为了实现具有挑战性的流数据科学应用程序的可扩展性能,需要一个允许开发人员无缝构建针对各种可扩展系统的应用程序的框架。该规划项目正在针对开发开源框架 StreamWare 的大型提案进行初步研究,该框架将使用户能够开发流数据科学应用程序。该项目正在建立一个由应用程序开发人员和用户、计算机科学家和数据科学家组成的社区,他们将成为 StreamWare 框架的早期采用者和开发人员。与领域专家协商,正在生成 StreamWare 的关键数据科学内核列表,并且正在评估其现有的最先进算法和硬件 IP,以确定性能限制和改进机会。该项目还阐明了可以表示和操作异构平台上的流数据的新颖抽象的要求。该项目使用安全智能电网的隐私保护流图学习作为激励应用程序,使用共生可扩展性的新概念来展示端到端可扩展性的初步证据,该概念捕获了 StreamWare 跨层优化的影响。该规划项目的预期成果包括关于在大笔赠款中开展的研究活动的提案、调查活动结果的出版物和实现流数据科学的未来研究方向,以及未来研究生和本科生课程的课程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Brooks其他文献
Carbon Dependencies in Datacenter Design and Management
数据中心设计和管理中的碳依赖性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bilge Acun;Benjamin Lee;Fiodar Kazhamiaka;Aditya Sundarrajan;Kiwan Maeng;Manoj Chakkaravarthy;David Brooks;Carole - 通讯作者:
Carole
The VPH-Physiome Project: Standards, tools and databases for multi-scale physiological modelling
VPH-Physiome 项目:多尺度生理建模的标准、工具和数据库
- DOI:
10.1007/978-88-470-1935-5_8 - 发表时间:
2012 - 期刊:
- 影响因子:3.8
- 作者:
P. Hunter;C. Bradley;Randall Britten;David Brooks;L. Carotenuto;Richard Christie;Alejandro F Frangi;A. Garny;David Ladd;C. Little;D. Nickerson;P. Nielsen;Andrew L. Miller;X. Planes;Martin Steghoffer;A. Young;Tommy Yu - 通讯作者:
Tommy Yu
A joint management middleware to improve training performance of deep recommendation systems with SSDs
联合管理中间件,提高SSD深度推荐系统的训练性能
- DOI:
10.1145/3489517.3530426 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chun;Carole;Gu;David Brooks - 通讯作者:
David Brooks
Injection Fall-Off Analysis of Polymer flooding EOR
聚合物驱提高采收率注入衰减分析
- DOI:
10.2118/145125-ms - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hassan Mahani;T. Sorop;P. V. D. Hoek;David Brooks;M. Zwaan - 通讯作者:
M. Zwaan
Complexity − Effective Design Workshop on
复杂性 - 有效的设计研讨会
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Wisconsin;P. Bose;P. Kudva;P. Kudva;B. Curran;S. Karandikar;M. Mayo;S. Carey;L. Cheng;K. Ramani;R. Balasubramonian;J. Carter;G. Loh;M. Co;D. Weikle;K. Skadron;D. Abts;Y. Cray;D. J. Chen;Lilja;T. Austin;R. I. Bahar;David Brooks;A. Buyuktosunoglu;George Z. N. Cai;B. Falsafi;K. Farkas;Antonio González;P. Hofstee;G. Memik;Chuck Moore;Subbarao Palacharla;D. Albonesi;Diana Marculescu;Benjamin Lee - 通讯作者:
Benjamin Lee
David Brooks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Brooks', 18)}}的其他基金
SHF: Medium: A Cloudless Universal Translator
SHF:Medium:无云通用翻译器
- 批准号:
1704834 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CSR: SMALL: Virtualized Accelerators for Scalable, Composable Architectures
CSR:小型:用于可扩展、可组合架构的虚拟化加速器
- 批准号:
1718160 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
SHF: Small: Exploration of energy-optimized computing architectures using integrated voltage regulators
SHF:小型:使用集成稳压器探索能源优化计算架构
- 批准号:
1218298 - 财政年份:2012
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: II-NEW: Prototyping Platform to Enable Power-Centric Multicore Research
协作研究:II-NEW:支持以功耗为中心的多核研究的原型设计平台
- 批准号:
1059264 - 财政年份:2011
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Workshop to Define Student Collaborative Climate Science Research; Silver Spring, MD
定义学生协作气候科学研究的研讨会;
- 批准号:
1000357 - 财政年份:2010
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Travel Support for the 2010 IEEE International Symposium on Performance Analysis of Systems and Software
2010 年 IEEE 国际系统和软件性能分析研讨会的差旅支持
- 批准号:
0963160 - 财政年份:2009
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF CCF-CPA: Reliability in the Face of Variability under Nanoscale Technology Scaling
NSF CCF-CPA:纳米技术扩展下面对可变性的可靠性
- 批准号:
0702344 - 财政年份:2007
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH -- CSR-EHS: Integrated Power Delivery - Hardware-Software Techniques to Eliminate Off-Chip Regulation from Embedded Systems
合作研究——CSR-EHS:集成供电——消除嵌入式系统片外调节的硬件-软件技术
- 批准号:
0720566 - 财政年份:2007
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CAREER: A Framework for Early-Stage Computer Architecture Design Space Exploration and Optimization
职业:早期计算机架构设计空间探索和优化的框架
- 批准号:
0448313 - 财政年份:2005
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant