Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale

协作研究:PPoSS:大型:大规模声明性分析的全栈方法

基本信息

  • 批准号:
    2316161
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

The project investigates full-stack implementation methodologies for expressive programming systems that effectively bridge the gap between human-level specification and high-performance implementation of complex reasoning tasks at scale. Declarative languages permit a programmer to provide high-level rules and declarations that define some sought-after solution as a latent implication to be materialized automatically by the computer. The project's novelties are to scale this vision of high-performance declarative reasoning both to structured, higher-order, and probabilistic formulations and to the next generation of supercomputers and cloud-based clusters. The project's impacts are on application designers and programmers in key application areas, including precision medicine, stochastic modeling, software verification, graph analytics, and security. The project is developing open-source tools, programming languages, and frameworks capable of enabling truly scalable reasoning for users across disciplines.The complexities of next-generation exascale systems pose key challenges: managing increased parallelism, heterogeneity, graphic processing units (GPUs), deep memory hierarchies, and performance tuning across the full software stack. With this increasing complexity and diversity in the hardware configuration of upcoming high-performance computing systems, it becomes difficult to write maintainable and scalable applications by hand. Modern chain-forward reasoning systems are being extended with structured, higher-order data, probabilistic semantics, lattice orderings, recursive aggregation, and first-order theories, posing key implementation challenges - especially in a parallel setting. In this project, the investigators are developing a unified, and tunable, full-stack foundation for highly expressive chain-forward programming to be deployed at scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了表达编程系统的全堆栈实施方法,这些方法有效地弥合了人级规范和高性能实施复杂推理任务之间的差距。声明性语言允许程序员提供高级规则和声明,这些规则和声明将某些受欢迎的解决方案定义为一种潜在的含义,以自动由计算机自动实现。该项目的新颖性是将高性能声明性推理的这种愿景扩展到结构化,高阶和概率的配方,以及下一代超级计算机和基于云的群集的愿景。该项目的影响是对关键应用领域的应用程序设计师和程序员的影响,包括精密医学,随机建模,软件验证,图形分析和安全性。该项目正在开发开源工具,编程语言和框架,能够为用户跨学科提供真正可扩展的推理。下一代Exascale系统的复杂性构成了关键挑战:管理增强的并行性,异质性,图形处理单元(GPU),深入的内存层次结构以及整个软件范围内的性能调节。随着即将到来的高性能计算系统的硬件配置的复杂性和多样性的增加,很难手工编写可维护和可扩展的应用程序。现代的链条推理系统正在扩展到结构化的,高阶的数据,概率语义,晶格有序,递归聚合和一阶理论,提出了关键的实施挑战 - 尤其是在平行环境中。在该项目中,调查人员正在开发一个统一,可调的,全堆栈的基础,用于将高度表达性的链式前提编程进行大规模部署。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swarat Chaudhuri其他文献

Data-Driven Program Completion
数据驱动的程序完成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxin Lu;Swarat Chaudhuri;C. Jermaine;David Melski
  • 通讯作者:
    David Melski
L G ] 1 0 A pr 2 01 9 Programmatically Interpretable Reinforcement Learning
LG ] 1 0 A pr 2 01 9 程序化可解释的强化学习
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Verma;VijayaraghavanMurali;Rishabh Singh;Pushmeet Kohli;Swarat Chaudhuri
  • 通讯作者:
    Swarat Chaudhuri
On-the-Fly Reachability and Cycle Detection for Recursive State Machines
递归状态机的动态可达性和循环检测
  • DOI:
    10.1007/978-3-540-31980-1_5
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Alur;Swarat Chaudhuri;K. Etessami;P. Madhusudan
  • 通讯作者:
    P. Madhusudan
A fixpoint calculus for local and global program flows
局部和全局程序流的不动点演算
Controller synthesis with inductive proofs for piecewise linear systems: An SMT-based algorithm
分段线性系统的控制器综合与归纳证明:基于 SMT 的算法

Swarat Chaudhuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swarat Chaudhuri', 18)}}的其他基金

SHF: Medium: Neurosymbolic Agents for Formal Theorem-Proving
SHF:介质:用于形式定理证明的神经符号代理
  • 批准号:
    2403211
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
  • 批准号:
    2212559
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
  • 批准号:
    2033851
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
  • 批准号:
    1901284
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Computer-Aided Grading, Feedback, and Assignment Creating in Massive Online Programming Courses
SHF:小型:大规模在线编程课程中的计算机辅助评分、反馈和作业创建
  • 批准号:
    1320860
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Marrying Program Analysis and Numerical Search
SHF:媒介:协作研究:程序分析与数值搜索的结合
  • 批准号:
    1162076
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
  • 批准号:
    1156059
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    1242507
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
  • 批准号:
    0953507
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    0964443
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了