Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)

协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究

基本信息

  • 批准号:
    2316177
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

The project aims to optimize communication overheads for high-performance computing (HPC) applications to better address the challenges caused by the rapid growth of data. Many important scientific simulations have large data inputs or outputs that may be sparse and that may also require extra effort and energy to move across processors, memories, and disks within a large HPC system. Moreover, an HPC node may have several different locations where data needs to be moved to and from while an HPC application is running. This work’s novelty lies in its focus on optimizing communication overheads for HPC systems and applications by supporting “computation-in-communication”. The integration of these new hardware advancements with appropriate software techniques will enhance the scalability of computing for high-performance applications including molecular dynamics simulations and applications like computational fluid dynamics codes. The project's impacts include: (1) enhanced scalability of computing for high-performance applications via reductions in data movement, (2) novel algorithmic and hardware designs for the broader HPC community to leverage emerging technologies combining communication and computation, and (3) open-source software infrastructure that can be used to facilitate education in parallel computing, HPC, and computer architecture at the graduate and undergraduate levels. The project's technical goals encompass several key components. First, it develops new algorithms to effectively leverage computation-in-communication paradigms. Second, it incorporates compression techniques to enhance data transfer efficiency, including the development of new, processing-friendly compressed formats specifically designed for sparse data. Third, the project designs novel hardware enhancements to optimize computation-in-communication. The project creates a full-stack solution for computation-in-communication with an open-source library focused on algorithmic and compression techniques which are co-designed with architecture designs to support efficient processing and manipulation of large data inputs. Combined, these hardware and software advancements will allow a larger class of applications to take advantage of next-generation data-centric HPC that minimizes communication overheads and data movement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在优化高性能计算 (HPC) 应用程序的通信,以更好地应对数据快速增长带来的挑战。许多重要的科学模拟具有大量稀疏的数据输入或输出,并且可能需要额外的开销。此外,在 HPC 应用程序运行时,HPC 节点可能需要在多个不同位置之间移动数据。专注于通过支持“通信计算”来优化 HPC 系统和应用程序的通信开销这些新的硬件进步与适当的软件技术的集成将增强高性能应用程序的计算可扩展性,包括分子动力学模拟和计算流体动力学等应用程序。该项目的影响包括:(1) 通过减少数据移动来增强高性能应用程序的计算可扩展性,(2) 为更广泛的 HPC 社区提供新颖的算法和硬件设计,以利用通信和计算相结合的新兴技术,以及 (3) )该项目的技术目标包括几个关键组成部分,它开发了新的算法来有效地利用计算。其次,它采用了压缩技术来提高数据传输效率,包括开发专门为稀疏数据设计的新的、易于处理的压缩格式。第三,该项目设计了新颖的硬件增强功能来优化通信中的计算。与专注于算法和压缩技术的开源库进行通信计算的全栈解决方案,这些算法和压缩技术与架构设计共同设计,以支持大数据输入的高效处理和操作。结合起来,这些硬件和软件的进步将允许。更大类别的应用程序利用下一代以数据为中心的 HPC,最大限度地减少通信开销和数据移动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bahar Asgari其他文献

ASCELLA: Accelerating Sparse Computation by Enabling Stream Accesses to Memory
ASCELLA:通过启用对内存的流访问来加速稀疏计算
Capella: Customizing Perception for Edge Devices by Efficiently Allocating FPGAs to DNNs
Capella:通过有效地将 FPGA 分配给 DNN 来定制边缘设备的感知
Proposing a Fast and Scalable Systolic Array for Matrix Multiplication
提出一种用于矩阵乘法的快速且可扩展的脉动阵列

Bahar Asgari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了