SHF: Medium: Neurosymbolic Agents for Formal Theorem-Proving

SHF:介质:用于形式定理证明的神经符号代理

基本信息

  • 批准号:
    2403211
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

This project studies artificial intelligence (AI)-powered techniques for enhancing the accessibility and efficiency of interactive formal theorem provers (ITPs). ITPs -- for example, Coq and Lean -- are a longstanding approach to the formal verification and are beginning to see uses in mathematics research as well. However, they tend to have a steep learning curve and require proofs to be spelled out in painful detail and are hence only accessible to a limited community of experts. The project's impact is to broaden the reach of ITPs by automating the low-level parts of theorem-proving, thereby paving the way to safer software, more robust hardware, and improved mathematical rigor in diverse applications. The project's novelties include introducing a category of "neurosymbolic agents" that enable such automation, and several new ways of implementing such agents. The PIs will be involved in training graduate and undergraduate students at University of Texas at Austin and help cultivate a new generation of researchers with dual expertise in formal methods and machine learning.Specifically, the project formulates formal theorem-proving as a control problem and approaches this problem through a combination of large language modeling, reinforcement learning, and symbolic analysis of proofs and theorems. Concrete research tasks include the development of new methods for training large language models on proof data, combining reinforcement learning and search for efficient inference, and the automatic discovery of proof tactics through proof compression. Collectively, the project's methods constitute a powerful toolkit that can automate many kinds of proofs that have traditionally been written by hand and have the potential to make ITPs significantly more usable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了人工智能(AI)能力的技术,以增强交互式形式定理抛弃(ITP)的可访问性和效率。 ITP(例如,COQ和LEAN)是对正式验证的长期方法,并且也开始在数学研究中看到用途。但是,它们倾向于具有陡峭的学习曲线,并且需要以痛苦的细节来阐明证据,因此只有有限的专家社区才能使用。该项目的影响是通过自动化定理提供的低水平部分来扩大ITP的范围,从而为更安全的软件,更健壮的硬件和改进的数学严格性铺平了道路。该项目的新颖性包括引入一种“神经肯定代理”的类别,该类别能够实现这种自动化,以及几种实施此类代理的新方法。 PIS将在德克萨斯大学奥斯汀分校的培训研究生和本科生中,并帮助培养新一代的研究人员,具有正式方法和机器学习双重专业知识。特别是,该项目将正式的定理提供作为控制问题,并通过大型语言建模,强调模型,强化学习,证明和象征性分析和象征性分析和象征性的分析来解决此问题。具体的研究任务包括开发用于在证明数据上培训大语言模型的新方法,结合强化学习和寻找有效推理的方法,以及通过证明压缩自动发现证明策略。总的来说,该项目的方法构成了一个强大的工具包,可以自动化许多类型的证据,这些证明传统上是手工编写的,并有可能使ITP显着可用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swarat Chaudhuri其他文献

Data-Driven Program Completion
数据驱动的程序完成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxin Lu;Swarat Chaudhuri;C. Jermaine;David Melski
  • 通讯作者:
    David Melski
L G ] 1 0 A pr 2 01 9 Programmatically Interpretable Reinforcement Learning
LG ] 1 0 A pr 2 01 9 程序化可解释的强化学习
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Verma;VijayaraghavanMurali;Rishabh Singh;Pushmeet Kohli;Swarat Chaudhuri
  • 通讯作者:
    Swarat Chaudhuri
On-the-Fly Reachability and Cycle Detection for Recursive State Machines
递归状态机的动态可达性和循环检测
  • DOI:
    10.1007/978-3-540-31980-1_5
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Alur;Swarat Chaudhuri;K. Etessami;P. Madhusudan
  • 通讯作者:
    P. Madhusudan
A fixpoint calculus for local and global program flows
局部和全局程序流的不动点演算
Controller synthesis with inductive proofs for piecewise linear systems: An SMT-based algorithm
分段线性系统的控制器综合与归纳证明:基于 SMT 的算法

Swarat Chaudhuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swarat Chaudhuri', 18)}}的其他基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
  • 批准号:
    2212559
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
  • 批准号:
    2033851
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
  • 批准号:
    1901284
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: Small: Computer-Aided Grading, Feedback, and Assignment Creating in Massive Online Programming Courses
SHF:小型:大规模在线编程课程中的计算机辅助评分、反馈和作业创建
  • 批准号:
    1320860
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Marrying Program Analysis and Numerical Search
SHF:媒介:协作研究:程序分析与数值搜索的结合
  • 批准号:
    1162076
  • 财政年份:
    2012
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
  • 批准号:
    1156059
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    1242507
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
  • 批准号:
    0953507
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    0964443
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了