Coatings for Next Generation Gravitational Wave Interferometers

下一代引力波干涉仪涂层

基本信息

  • 批准号:
    2110101
  • 负责人:
  • 金额:
    $ 44.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award supports research in relativity and relativistic astrophysics and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. The first detection of gravitational waves from the collision of two massive black holes by the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors in Livingston, Louisiana, and Hanford, Washington in 2015 not only confirmed Einstein's predictions of the existence of gravitational waves but also ratified years of efforts in the development of gravitational wave detectors (GWD). Gravitational wave detectors are interferometers in which an intense laser beam bounces between two sets of mirrors in orthogonal arms. Gravitational waves cause differences in the path length of the laser beam between the two interferometer arms, giving rise to a distinct interference pattern that when analyzed identifies the event that created them. The detection sensitivity of GWD is determined by various noise sources, among which thermal noise of the coatings in the mirrors of the interferometer is a main component. Thermal noise in the high reflectance amorphous oxide coatings in the interferometer's mirrors causes path length differences that can mask the signals from gravitational waves. To increase the sensitivity of present GWD and meet the demands of future GWD, a concerted effort to understand and control the mechanisms that give rise to thermal noise in amorphous oxide coatings is imperative. The projects will offer a diverse group of graduate students opportunities to gain in-depth understanding of the physical mechanisms that affect internal friction in amorphous materials and at the same time gain valuable expertise in optical sciences. This interdisciplinary research project will train students with valuable skills to contribute to advance science and technology in academic, national laboratory and industrial settings.The PI's team has recently achieved a breakthrough result. They have identified mixtures of titanium dioxide and germanium dioxide that show internal dissipations at a level of 0.0001. Such a low level of mechanical loss can provide for an almost a factor of two improvement on the level of Brownian noise with respect to the state-of-the-art materials. These results will make it possible to produce the mirrors that will meet the thermal noise requirements for the planned upgrades of the Advanced LIGO detectors. The team will investigate the fundamental mechanisms in TiO2 doped GeO2 that lead to such low mechanical loss and implement strategies to further reduce it. It will also investigate the optical properties of thin films to meet the stringent absorption loss requirements of the coatings for Advanced LIGO detectors. Multilayer dielectric coatings based on these optimized materials will be deposited by ion beam sputtering and characterized for their Brownian noise, which reduction greatly impacts the sensitivity of gravitational wave detectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并介绍了NSF“宇宙上的Windows”的优先领域。双激光干涉仪在路易斯安那州利文斯顿和华盛顿州汉福德的双激光干涉仪重力波观测器(Ligo)探测器和华盛顿汉福德的引力波第一次检测到两个巨大黑洞的引力波,不仅证实了爱因斯坦对重力波的存在的预测还批准了重力波探测器(GWD)发展的年份。引力波检测器是干涉仪,其中强烈的激光束在正交臂中的两组镜子之间反弹。引力波在两个干涉仪臂之间的激光束的路径长度上导致差异,从而产生独特的干扰模式,当分析时,将确定创建它们的事件。 GWD的检测灵敏度由各种噪声源确定,其中干涉仪镜子中的涂层的热噪声是主要成分。高反射率中的热噪声在干涉仪镜像中无定形氧化物涂层会导致路径长度差异,从而掩盖了引力波的信号。为了提高当前GWD的敏感性并满足未来GWD的需求,必须协同理解和控制引起无定形氧化物涂层中热噪声的机制。这些项目将为各种研究生提供了一些机会,以深入了解影响无定形材料内部摩擦的物理机制,同时获得光学科学方面的宝贵专业知识。这个跨学科研究项目将培训具有宝贵技能的学生,以在学术,国家实验室和工业环境中提高科学技术做出贡献。PI的团队最近取得了突破性的结果。 他们已经确定了二氧化钛和也显示于0.0001水平的内部耗散的混合物。 相对于最先进的材料,这种低水平的机械损失可以使布朗噪声水平的水平几乎可以提高两倍。这些结果将有可能产生镜子,以满足高级LIGO探测器计划升级的热噪声要求。 该团队将调查TIO2掺杂的GEO2中的基本机制,从而导致如此低的机械损失并实施进一步减少它的策略。 它还将研究薄膜的光学特性,以满足晚期LIGO探测器涂层的严格吸收损失要求。 基于这些优化材料的多层介电涂层将通过离子束溅射沉积并以其布朗噪声为特征,这极大地影响了引力波检测器的敏感性。该奖项反映了NSF的法定任务,并通过使用评估值得进行评估,使基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carmen Menoni其他文献

Low Mechanical Loss math
低机械损耗数学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Vajente;Le Yang;Aaron Davenport;Mariana Fazio;A. Ananyeva;Liyuan Zhang;Garilynn Billingsley;K. Prasai;Ashot Markosyan;R. Bassiri;M. Fejer;M. Chicoine;F. Schiettekatte;Carmen Menoni;Phys. Rev;Lett
  • 通讯作者:
    Lett

Carmen Menoni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carmen Menoni', 18)}}的其他基金

Collaborative Research: Center for Coatings Research
合作研究:涂料研究中心
  • 批准号:
    2309297
  • 财政年份:
    2023
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
  • 批准号:
    2012024
  • 财政年份:
    2020
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
  • 批准号:
    1708010
  • 财政年份:
    2017
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
Towards Ultrastable Amorphous Coatings for LIGO
LIGO 超稳定非晶涂层的研究
  • 批准号:
    1710957
  • 财政年份:
    2017
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
Ion Sculpting of Multilayer Gratings for Extreme Ultraviolet Applications
用于极紫外应用的多层光栅的离子雕刻
  • 批准号:
    1508745
  • 财政年份:
    2015
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
SBIR Phase I: Defect-Free Nano-Scale Printing: An Enabling Technology for Nanofabrication
SBIR 第一阶段:无缺陷纳米级印刷:纳米制造的使能技术
  • 批准号:
    1248924
  • 财政年份:
    2013
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
Gain and Recombination in InGaAsN and Their Impact on the Laser Output Behavior
InGaAsN 中的增益和复合及其对激光输出行为的影响
  • 批准号:
    0314410
  • 财政年份:
    2003
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
Carrier Transport Effects on Compressively Strained InAsP Lasers
压缩应变 InAsP 激光器的载流子传输效应
  • 批准号:
    9803066
  • 财政年份:
    1998
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
Development of Novel Instrumentation for the Growth of Low Dimensional Structures Using Molecular Beam Epitaxy
利用分子束外延生长低维结构的新型仪器的开发
  • 批准号:
    9871210
  • 财政年份:
    1998
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
CAREER: Enhancement Plan - Research on Blue Semiconductor Lasers and Early Motivation of Electrical Engineering Students
职业:增强计划 - 蓝色半导体激光器研究和电气工程专业学生的早期激励
  • 批准号:
    9502888
  • 财政年份:
    1995
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
  • 批准号:
    71302093
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scalable synthesis of sustainable biosourced carbon coatings for next-generation lithium-ion battery natural graphite anodes
用于下一代锂离子电池天然石墨阳极的可持续生物来源碳涂层的可扩展合成
  • 批准号:
    570885-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Alliance Grants
Next generation optical coatings to fully open the window on the gravitational Universe
下一代光学镀膜完全打开引力宇宙之窗
  • 批准号:
    ST/W004844/1
  • 财政年份:
    2022
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Fellowship
Developing Next-Generation Antimicrobial Copolymer Coatings for Biomedical Applications
开发用于生物医学应用的下一代抗菌共聚物涂层
  • 批准号:
    2825098
  • 财政年份:
    2022
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Studentship
STTR Phase II: The Next Generation of Environmentally Friendly Coatings for Marine Antifouling
STTR第二期:下一代环保型海洋防污涂料
  • 批准号:
    2036498
  • 财政年份:
    2021
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Cooperative Agreement
Plasma-based surface modifications and nano-structured multifunctional coatings for the next generation of biodegradable Mg-based bone-contact implants
用于下一代可生物降解镁基骨接触植入物的等离子体表面改性和纳米结构多功能涂层
  • 批准号:
    543660-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了