EAGER: SaTC-EDU: Privacy Enhancing Techniques and Innovations for AI-Cybersecurity Cross Training

EAGER:SaTC-EDU:人工智能-网络安全交叉培训的隐私增强技术和创新

基本信息

  • 批准号:
    2038029
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Artificial intelligence (AI) is being rapidly deployed in many security-critical applications. This has fueled the use of AI to improve cybersecurity via speed of reasoning and reaction (AI for cybersecurity). At the same time, the widespread use of AI introduces new adversarial threats to AI systems and highlights a need for robustness and resilience guarantees for AI (cybersecurity for AI), while ensuring fairness of and trust in AI algorithmic decision making. Not surprisingly, privacy-enhancing technologies and innovations are critical to mitigating the adverse effects of intentional exploitation and protecting AI systems. However, resources for AI-cybersecurity cross-training are limited, and even fewer programs integrate topics, techniques and research innovations pertaining to privacy in their basic curricula covering AI or cybersecurity. To bridge this cross-training gap and to advance AI-cybersecurity education, this project will create a pilot program on privacy-enhancing AI-cybersecurity cross-training, which will provide a transformative learning experience for students. The results of this project will provide students with the AI-cybersecurity knowledge and skills that will enable them to enter the workforce and contribute to the creation of a secure and trustworthy AI-cybersecurity environment that simultaneously supports AI safety, AI privacy and AI fairness for all. The intellectual merit of this project stems from the development of a first-of-its-kind research and teaching methodology that will provide effective AI-cybersecurity cross-training in the context of privacy. This will include developing a privacy foundation virtual laboratory (vLab) and three advanced topic vLabs, each representing a unique educational innovation for AI-cybersecurity cross-training. The AI for Security vLab will enable students to learn that privacy is a critical system property for all AI-enabled cybersecurity systems and applications. The Security of AI vLab will assist students in learning that privacy is an important safety guarantee against a variety of privacy leakage risks. The AI Fairness and Trust vLab will empower students to learn that privacy is an essential measure of trust and fairness of AI systems by ensuring the right to privacy and AI ethics for all. By participating in these vLabs, students will learn to use risk assessment tools to understand new vulnerabilities to attack of AI models and to design risk-mitigation tools to protect AI model learning and reasoning against security or privacy violations and algorithmic biases.This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 正在许多安全关键型应用中快速部署。这推动了人工智能的使用,通过推理和反应速度来提高网络安全(人工智能用于网络安全)。与此同时,人工智能的广泛使用给人工智能系统带来了新的对抗性威胁,并凸显了对人工智能鲁棒性和弹性保证(人工智能网络安全)的需求,同时确保人工智能算法决策的公平性和信任。毫不奇怪,增强隐私的技术和创新对于减轻故意利用的不利影响和保护人工智能系统至关重要。然而,人工智能与网络安全交叉培训的资源有限,将隐私相关主题、技术和研究创新纳入人工智能或网络安全基础课程的项目就更少了。为了弥补这种交叉培训差距并推进人工智能-网络安全教育,该项目将创建一个关于增强隐私的人工智能-网络安全交叉培训试点项目,这将为学生提供变革性的学习体验。该项目的成果将为学生提供人工智能网络安全知识和技能,使他们能够进入劳动力市场,并有助于创建一个安全、值得信赖的人工智能网络安全环境,同时支持人工智能安全、人工智能隐私和人工智能公平性。全部。该项目的智力价值源于首创的研究和教学方法的开发,该方法将在隐私背景下提供有效的人工智能-网络安全交叉培训。这将包括开发一个隐私基金会虚拟实验室 (vLab) 和三个高级主题 vLab,每个 vLab 代表人工智能-网络安全交叉培训的独特教育创新。 AI 安全 vLab 将使学生了解隐私是所有支持 AI 的网络安全系统和应用程序的关键系统属性。 AI vLab的安全性将帮助学生了解隐私是防范各种隐私泄露风险的重要安全保障。 AI 公平和信任 vLab 将通过确保所有人的隐私权和 AI 道德,让学生了解隐私是 AI 系统信任和公平的重要衡量标准。通过参与这些虚拟实验室,学生将学习使用风险评估工具来了解人工智能模型的新攻击漏洞,并设计风险缓解工具来保护人工智能模型学习和推理免受安全或隐私侵犯以及算法偏差的影响。该项目受到支持由安全可信网络空间 (SaTC) 计划的一项特别倡议发起,旨在促进网络安全、人工智能和教育领域之间新的、以前未探索过的合作。 SaTC 计划与联邦网络安全研究与发展战略计划和国家隐私研究战略相一致,旨在保护和维护网络系统不断增长的社会和经济效益,同时确保安全和隐私。该奖项反映了 NSF 的法定使命,并被认为值得获得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metric Learning as a Service With Covariance Embedding
具有协方差嵌入的度量学习即服务
Selecting and Composing Learning Rate Policies for Deep Neural Networks
选择和制定深度神经网络的学习率策略
Boosting Object Detection Ensembles with Error Diversity
利用错误多样性增强目标检测集成
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Liu其他文献

Binuclear vanadium dimethylphosphino carbonyls: vanadium-vanadium multiple bonds and four-electron donor carbonyl groups as structural features in unsaturated systems
双核钒二甲基膦羰基:钒-钒多重键和四电子供体羰基作为不饱和体系的结构特征
  • DOI:
    10.1016/j.ica.2018.02.008
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Yujia Zhang;Jiarong Liu;Ling Liu;Xiuhui Zhang;Qian;R. King
  • 通讯作者:
    R. King
Improving MapReduce Performance in a Heterogeneous Cloud: A Measurement Study
提高异构云中的 MapReduce 性能:测量研究
Cry1Ab/Ac proteins released from subspecies of Bacillus thuringiensis (Bt) and transgenic Bt-rice in different paddy soils
不同稻田土壤中苏云金芽孢杆菌 (Bt) 亚种和转基因 Bt 水稻释放的 Cry1Ab/Ac 蛋白
  • DOI:
    10.1080/03650340.2019.1681587
  • 发表时间:
    2019-11-13
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ling Liu;S. Knauth;Longhua Wu;T. Eickhorst
  • 通讯作者:
    T. Eickhorst
Learning, indexing, and diagnosing network faults
学习、索引和诊断网络故障
  • DOI:
    10.1145/1557019.1557113
  • 发表时间:
    2009-06-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Wang;M. Srivatsa;D. Agrawal;Ling Liu
  • 通讯作者:
    Ling Liu
Processing generalized k-nearest neighbor queries on a wireless broadcast stream
处理无线广播流上的广义 k 最近邻查询
  • DOI:
    10.1016/j.ins.2011.11.007
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    HaRim Jung;Y. Chung;Ling Liu
  • 通讯作者:
    Ling Liu

Ling Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Liu', 18)}}的其他基金

NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy
NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网
  • 批准号:
    2302720
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
  • 批准号:
    1946189
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
  • 批准号:
    1751610
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Medium: Privacy Preserving Computation in Big Data Clouds
TWC:中:大数据云中的隐私保护计算
  • 批准号:
    1564097
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NetSE: Medium: Privacy-Preserving Information Network and Services for Healthcare Applications
NetSE:媒介:用于医疗保健应用程序的隐私保护信息网络和服务
  • 批准号:
    0905493
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SGER: Distributed Spatial Partitioning Algorithms for Scalable Processing of Mobile Location Queries
SGER:用于可扩展处理移动位置查询的分布式空间分区算法
  • 批准号:
    0640291
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
  • 批准号:
    0627474
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A Peer to Peer Approach to Large Scale Information Monitoring
大规模信息监控的点对点方法
  • 批准号:
    0306488
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
System Support for Distributed Information Change Monitoring
分布式信息变更监控的系统支持
  • 批准号:
    9988452
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Artificial Intelligence for Cybersecurity Education via a Machine Learning-Enabled Security Knowledge Graph
EAGER:SaTC-EDU:通过机器学习支持的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2114789
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114920
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114982
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了