CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials

职业:氢键材料中的纳米级热传输

基本信息

  • 批准号:
    1751610
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

The hydrogen bond (H-bond) is an essential element of many materials including DNA, proteins, hydrogels and molecular self-assemblies. Despite existing knowledge of energy transport in some large protein systems, a systematic understanding of nanoscale thermal transport across H-bonded materials and, in particular, the role of H-bonds is lacking. The knowledge gap has hindered the understanding of heat transfer in living systems and development of novel biomaterials, e.g. synthetic spider silk, with extraordinary thermal properties. To address these critical challenges, this project investigates a suite of H-bonded materials including protein secondary structures and organic-inorganic interfaces, using state-of-the-art computational approaches combined with experimental validations. The research outcomes will accelerate design, development and deployment of novel H-bonded materials with tunable thermal properties, to meet the increasing needs for biocompatible, multifunctional materials in a wide range of areas including bio-implantation, tissue regeneration, cancer treatment, and energy storage. This project also seeks to achieve three societally relevant outcomes including (1) broadening participation of Female Native American students in engineering through two mentoring programs; (2) fostering skills of materials modeling among undergraduate students using a 3D Printing Challenge and a Fellowship program; and (3) conveying essential concepts of biomaterials and thermal management to high school students and the general public through outreach activities.Building upon recent progress in advanced phonon transport theory and vibrational mode analysis, this project systematically reveals the role of H-bonds in thermal transport across several representative building blocks of H-bonded materials including nanocrystals (e.g. protein beta-sheets), nanowires (e.g. protein alpha-helices and 3-10 helices) and interfaces. By using molecular dynamics simulations and functional theory calculations, the investigations quantifies anisotropy of thermal conduction in the H-bonded building blocks in association with several structural and environmental factors including the H-bond connectivity (e.g. alpha helices vs. 3-10 helices), the side chain chemistry and size, and the solvation. Particular emphasis is given to understanding how different amino acid sequences can affect thermal conductivities and transport characteristics including phonon density of states, group velocities, and lifetimes. New physical insights are generated regarding: (1) how H-bond networks of different forms contribute to nanoscale thermal transport; and (2) how thermal transport in H-bonded materials differs from that in other 1D (e.g. nanotubes), 2D (e.g. graphene) and 3D materials that have no H-bonds. The achieved knowledge base enables development of new synthetic silk with highly conductive building blocks as well as novel H-bonded interfaces that are made, characterized and compared with existing materials for validation of the theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氢键(H-bond)是许多材料的基本元素,包括DNA、蛋白质、水凝胶和分子自组装体。尽管对一些大型蛋白质系统中的能量传输已有了解,但对氢键材料的纳米级热传输,特别是氢键的作用缺乏系统的了解。知识差距阻碍了对生命系统传热的理解和新型生物材料的开发,例如生物材料。合成蜘蛛丝,具有非凡的保暖性能。为了解决这些关键挑战,该项目使用最先进的计算方法与实验验证相结合,研究了一系列氢键材料,包括蛋白质二级结构和有机-无机界面。研究成果将加速具有可调热性能的新型氢键材料的设计、开发和部署,以满足生物植入、组织再生、癌症治疗和能源等广泛领域对生物相容性多功能材料日益增长的需求贮存。该项目还力求实现三项与社会相关的成果,包括(1)通过两个指导计划扩大美国原住民女性学生对工程学的参与; (2) 利用 3D 打印挑战赛和奖学金计划培养本科生的材料建模技能; (3)通过外展活动向高中生和公众传达生物材料和热管理的基本概念。该项目基于先进声子输运理论和振动模式分析的最新进展,系统地揭示了氢键在热管理中的作用跨氢键材料的几个代表性构件的传输,包括纳米晶体(例如蛋白质β-折叠)、纳米线(例如蛋白质α-螺旋和3-10螺旋)和接口。通过使用分子动力学模拟和功能理论计算,研究量化了氢键结构单元中热传导的各向异性,与包括氢键连接性(例如 α 螺旋与 3-10 螺旋)在内的多种结构和环境因素相关,侧链化学和尺寸,以及溶剂化。特别强调了解不同的氨基酸序列如何影响热导率和传输特性,包括声子态密度、群速度和寿命。新的物理见解产生于:(1)不同形式的氢键网络如何促进纳米级热传输; (2) 氢键材料中的热传输与其他没有氢键的 1D(例如纳米管)、2D(例如石墨烯)和 3D 材料中的热传输有何不同。所获得的知识库使得能够开发具有高导电构件以及新型氢键界面的新型合成丝,这些合成丝经过制作、表征并与现有材料进行比较以验证理论。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance
分层氢键石墨烯/聚合物界面,界面热导率显着增强
  • DOI:
    10.1039/c8nr08760a
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zhang, Lin;Liu, Ling
  • 通讯作者:
    Liu, Ling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Liu其他文献

Self-Adaptive Visual Background Extraction with Ghost Regions Elimination
具有鬼影区域消除功能的自适应视觉背景提取
Integrated multi-dithering controller for adaptive optics
用于自适应光学的集成多重抖动控制器
  • DOI:
    10.1117/12.736263
  • 发表时间:
    2007-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios N. Loizos;Ling Liu;P. Sotiriadis;G. Cauwenberghs;M. Vorontsov
  • 通讯作者:
    M. Vorontsov
Review on Design, Synthesis, and Use of High Temperature Resistant Aerogels Exceeding 800 °C
800℃以上耐高温气凝胶的设计、合成及使用综述
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pei;Ling Liu;Ming;Jing Wang;Xiaomin Ma;Jin Wang
  • 通讯作者:
    Jin Wang
Pathophysiology teaching reform during the COVID-19 pandemic
COVID-19大流行期间的病理生理学教学改革
  • DOI:
    10.1152/advan.00031.2021
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lijun Yao;Kun Li;Jing He;Ling Liu
  • 通讯作者:
    Ling Liu
Information Monitoring on the Web: A Scalable Solution
Web 上的信息监控:可扩展的解决方案
  • DOI:
    10.1023/a:1021028509335
  • 发表时间:
    2002-11-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ling Liu;Wei Tang;David J. Buttler;C. Pu
  • 通讯作者:
    C. Pu

Ling Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Liu', 18)}}的其他基金

NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy
NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网
  • 批准号:
    2302720
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Privacy Enhancing Techniques and Innovations for AI-Cybersecurity Cross Training
EAGER:SaTC-EDU:人工智能-网络安全交叉培训的隐私增强技术和创新
  • 批准号:
    2038029
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
  • 批准号:
    1946189
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TWC: Medium: Privacy Preserving Computation in Big Data Clouds
TWC:中:大数据云中的隐私保护计算
  • 批准号:
    1564097
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NetSE: Medium: Privacy-Preserving Information Network and Services for Healthcare Applications
NetSE:媒介:用于医疗保健应用程序的隐私保护信息网络和服务
  • 批准号:
    0905493
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SGER: Distributed Spatial Partitioning Algorithms for Scalable Processing of Mobile Location Queries
SGER:用于可扩展处理移动位置查询的分布式空间分区算法
  • 批准号:
    0640291
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
  • 批准号:
    0627474
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
A Peer to Peer Approach to Large Scale Information Monitoring
大规模信息监控的点对点方法
  • 批准号:
    0306488
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
System Support for Distributed Information Change Monitoring
分布式信息变更监控的系统支持
  • 批准号:
    9988452
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
  • 批准号:
    52302036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
  • 批准号:
    32300576
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
BMP2介导人毛囊干细胞纳米级仿生微环境的构建及相关机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Transfer of Momentum and Energy in the Nanoscale Using Quantum and Thermal Fluctuations
职业:利用量子和热涨落在纳米尺度上传递动量和能量
  • 批准号:
    1941680
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Thermal stability and scaling of nanoscale spin-electronic devices based on novel inverse-Heusler alloys
职业:基于新型逆赫斯勒合金的纳米级自旋电子器件的热稳定性和缩放
  • 批准号:
    1846829
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
  • 批准号:
    1946189
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
  • 批准号:
    1941743
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
  • 批准号:
    1836967
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了