EAGER: SaTC-EDU: Artificial Intelligence for Cybersecurity Education via a Machine Learning-Enabled Security Knowledge Graph

EAGER:SaTC-EDU:通过机器学习支持的安全知识图进行网络安全教育的人工智能

基本信息

  • 批准号:
    2114789
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Cybersecurity education is exceptionally challenging because its learning outcomes often comprise fragmented information that fails to provide learners with adaptive guidance on how to connect and build on the concepts they have learned. This project will develop an artificial intelligence (AI)-enabled cybersecurity tool referred to as a knowledge graph (AISecKG) to address this cybersecurity education challenge. Knowledge graphs, widely used by search engines and social networks, integrate data and can store linked descriptions of items such as objects, concepts, and events. This project applies a novel learning approach for cybersecurity education by providing university students a flexible learning plan that enhances their critical thinking and problem-solving skills. This approach aims to help students understand the complex nature of cyber-attacks and defense mechanisms, provide them with a holistic view and better prepare them to address the complexities of real-world scenarios. The development and deployment of AISecKG are interdisciplinary. First, the project employs machine learning (ML) and AI approaches to build a new cybersecurity knowledge graph by measuring and setting up similarities and dependencies among cybersecurity learning targets for both study planning and learning-outcome assessment. Second, it incorporates a multi-level assessment approach to design cybersecurity curricula, scaffold student cognitive engagement, and improve student learning outcomes. AISecKG has two primary design goals. First, it will guide instructors to develop a problem-based learning curriculum based on their learning objectives. Second, it will allow students to apply an adaptive learning strategy, incorporating hands-on labs to assess their learning outcomes. To assess students’ learning performance quantitatively, AISecKG will (a) deploy an evidence-based model and learning materials for problem-based cybersecurity education focusing on developing teacher capacity and practice while using targeted materials and approaches; (b) produce a productive teaching model for deep learning that promotes a culture of scientific inquiry and design as well as a set of strategies to develop student competency; and (c) provide evidence of student learning outcomes as a pedagogical resource to support student cognitive engagement in learning tasks interactively. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络安全教育极具挑战性,因为其学习成果通常包含碎片化信息,无法为学习者提供如何连接和构建他们所学概念的自适应指导。该项目将开发一种支持人工智能 (AI) 的网络安全工具。作为解决网络安全教育挑战的知识图谱(AISecKG),知识图谱被搜索引擎和社交网络广泛使用,可以集成数据并可以存储对象、概念和事件等项目的链接描述。该项目应用了一种新颖的学习方式。通过提供大学网络安全教育的方法为学生提供灵活的学习计划,增强他们的批判性思维和解决问题的能力。这种方法旨在帮助学生了解网络攻击和防御机制的复杂性,为他们提供整体观点,并更好地为他们解决现实的复杂性做好准备。 AISecKG 的开发和部署是跨学科的,该项目采用机器学习 (ML) 和人工智能方法,通过测量和建立网络安全学习目标之间的相似性和依赖性来构建新的网络安全知识图。其次,学习成果评估。 AISecKG 采用多层次评估方法来设计网络安全课程,提高学生的认知参与度并提高学生的学习成果,其主要设计目标有两个:第一,它将指导教师根据其学习目标开发基于问题的学习课程。其次,它将允许学生应用适应性学习策略,结合动手实验室来评估他们的学习成果。为了定量评估学生的学习表现,AISecKG 将 (a) 部署基于证据的模型和基于问题的学习材料。网络安全教育注重发展教师的能力和实践,同时使用有针对性的材料和方法;(b) 制定有效的深度学习教学模式,促进科学探究和设计文化以及一套培养学生能力的策略;(c) 提供证据学生的学习成果作为一种教学资源,支持学生以交互方式参与学习任务。该项目得到了安全可信网络空间(SaTC)计划的一项特别倡议的支持,以促进网络安全、人工智能等领域之间新的、以前未探索过的合作。智力,以及SaTC 计划与联邦网络安全研究与发展战略计划和国家隐私研究战略相一致,旨在保护和维护网络系统不断增长的社会和经济效益,同时确保安全和隐私。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey
知识图谱可以减少法学硕士的幻觉吗?
  • DOI:
    10.48550/arxiv.2311.07914
  • 发表时间:
    2023-11-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garima Agrawal;Tharindu Kumarage;Zeyad Alghami;Huanmin Liu
  • 通讯作者:
    Huanmin Liu
Development and Validation of the Uncertainty Management in Problem-Based Learning Scale in Postsecondary STEM Education
中学后 STEM 教育中基于问题的学习量表的不确定性管理的开发和验证
AISecKG: Knowledge Graph Dataset for Cybersecurity Education
AISecKG:网络安全教育知识图数据集
Problems of Problem-Based Learning: Exploring Meta-Agency in Problem-Based Cybersecurity Learning in College Education
基于问题的学习的问题:探索大学教育中基于问题的网络安全学习的元代理
Problem- Based Cybersecurity Lab with Knowledge Graph as Guidance
以知识图为指导的基于问题的网络安全实验室
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huan Liu其他文献

Hydrologic Cycle Optimization Part II: Experiments and Real-World Application
水文循环优化第二部分:实验和实际应用
  • DOI:
    10.1007/978-3-319-93815-8_34
  • 发表时间:
    2018-06-17
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    B. Niu;Huan Liu;Xiaohui Yan
  • 通讯作者:
    Xiaohui Yan
Development of a SIDA-SPE-GC-MS/MS isotope dilution assay for the quantification of eugenol in water samples
开发用于定量水样中丁子香酚的 SIDA-SPE-GC-MS/MS 同位素稀释测定法
  • DOI:
    10.1111/are.13428
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Huan Liu;Jincheng Li;Chao
  • 通讯作者:
    Chao
Impact of Post Metallization Annealing (PMA) on the Electrical Properties of Ge nMOSFETs with ZrO2 Dielectric
金属化后退火 (PMA) 对采用 ZrO2 电介质的 Gen nMOSFET 电性能的影响
  • DOI:
    10.1016/j.sse.2022.108240
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lulu Chou;Xiao Yu;Y. Liu;Yang Xu;Yue Peng;Huan Liu;G. Han;Y. Hao
  • 通讯作者:
    Y. Hao
Thresholding
阈值化
  • DOI:
    10.1007/978-0-387-39940-9_3810
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Hinterberger;J. Domingo;V. Kashyap;V. Khatri;R. Snodgrass;Paolo Terenziani;Manolis Koubarakis;Yue Zhang;James B. D. Joshi;J. Gamper;Michael H. Böhlen;C. S. Jensen;A. Tansel;Michael H. Böhlen;Peter Revesz;Nikos Mamoulis;Jef Wijsen;R. Snodgrass;Claudio Bettini;X. S. Wang;Sushil Jajodia;C. Dyreson;Dengfeng Gao;J. Chomicki;David Toman;Arie Shoshani;Carlo Combi;Richard T. Snodgrass;K. Torp;John F. Roddick;Ulrich Schiel;Sônia Fern;es Silva;es;F. Gr;i;i;Vassilis Plachouras;M. Lalmas;I. A. El;Ben Carterette;Dou Shen;Hua Li;P. Ferragina;Igor Nitto;Li Zhang;Jian;Gonzalo Navarro;Haoda Huang;Benyu Zhang;Edleno Silva De Moura;Yanli Cai;P. Srinivasan;Jun Yan;Jian Hu;Ning Liu;Marcelo Arenas;M. Breunig;Y. Al;G. Samaras;Serguei Mankovskii;Betsy George;Shashi Shekhar;Omar Alonso;Michael Gertz;Angelo Montanari;Peter Øhrstrøm;P. Hasle;N. Lorentzos;Like Gao;James Caverlee;Hans;Amélie Marian;Erik G. Hoel;P. D. Felice;E. Clementini;B. Kemme;Ralf Hartmut Güting;Gottfried Vossen;D. Shasha;A. Reuter;Gustavo Alonso;Heiko Schuldt;Mirella M. Moro;V. Tsotras;Y. Manolopoulos;Y. Theodoridis;Jean;V. Novák;Leila De Floriani;P. Magillo;Maxime Crochemore;Thierry Lecroq;Zoran Despotovic;Nitin Agarwal;Huan Liu;Radu Sion;Philippe Bonnet;R. Fagin;Lei Chen;Jens Lechtenbörger;G. Lausen;G. Amati
  • 通讯作者:
    G. Amati
Simultaneous detection of Cd2+ and Pb2+ in food based on sensing electrode prepared by conductive carbon paper, rGO and CoZn·MOF (CP-rGO-CoZn·MOF).
基于导电碳纸、rGO和CoZn·MOF制备的传感电极(CP-rGO-CoZn·MOF)同时检测食品中的Cd2和Pb2。
  • DOI:
    10.1016/j.aca.2022.339812
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yanli Qi;Xiaolong Chen;D. Huo;Huan Liu;Mei Yang;Changjun Hou
  • 通讯作者:
    Changjun Hou

Huan Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huan Liu', 18)}}的其他基金

SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2335666
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
  • 批准号:
    2229461
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
  • 批准号:
    2229461
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Discovering and Characterizing Implicit Links in Graph Data
III:小:发现和表征图数据中的隐式链接
  • 批准号:
    1614576
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Discovering and Characterizing Implicit Links in Graph Data
III:小:发现和表征图数据中的隐式链接
  • 批准号:
    1614576
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Transforming Feature Selection to Harness the Power of Social Media
III:小:转变特征选择以利用社交媒体的力量
  • 批准号:
    1217466
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Conference Sponsorship for the Third International Conference on Social Computing, Behavioral Modeling, and Prediction
NSF 会议赞助第三届社会计算、行为建模和预测国际会议
  • 批准号:
    1019597
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Workshop Sponsorship for the Second International Workshop on Social Computing, Behavioral Modeling, and Prediction
NSF 研讨会赞助第二届社会计算、行为建模和预测国际研讨会
  • 批准号:
    0908506
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III-COR-Small: Beyond Feature Selection and Extraction - An Integrated Framework for High-Dimensional Data of Small Labeled Samples
III-COR-Small:超越特征选择和提取 - 小标记样本高维数据的集成框架
  • 批准号:
    0812551
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A Collaborative Project: Development of An Undergraduate Data Mining Course
合作项目:本科数据挖掘课程的开发
  • 批准号:
    0231448
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114920
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114982
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114936
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了