III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
基本信息
- 批准号:2229461
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A graph is a data structure consisting of nodes and edges. Graph data is the data associated with nodes and edges in a graph. Graph data is huge and is widely present in many real-world applications. Social media data is a typical example of graph data in which users are nodes and their relationships are edges. Since users have different profiles, they can form disparate relationships (i.e., edges) amongst themselves. When a dataset is large, annotating or labeling it with ground truth is time consuming and labor intensive. A pressing need for machine learning and data mining to effectively deal with big data like graph data is to address the labeled data scarcity problem. When we can only label a miniscule amount of data, can we learn well from big graph data? Graph few-shot node classification, in which learning can occur when only a small amount of data are labeled, is one such problem for which researchers strive to find novel solutions. In such a problem, training data can vary in the training phase depending on the availability of labeled nodes - with labels, weak labels, or no labels. To address such unprecedented challenges, this project aims to develop new approaches. The proposed research will train students to perform independent research, conduct scientific experiments, and publish technical results to nurture science and engineering researchers. Students will be exposed to the core techniques of real-world problems with graph data and machine learning. The impact of this work will also extend to critical thinking of dominant approaches, understanding the essence of difficult problems such as graph few-shot node classification, and exploring simple and effective solutions considering real-world scenarios.Episodic meta-learning is currently the dominant approach that has been shown to be effective for supervised few-shot node classification. This project questions the necessity of this meta-learning approach and elaborates the need for a novel graph contrastive learning approach to few-shot node classification to handle supervised few-shot node classification and more challenging and realistic cases where only weak or no supervision information is available during training. This project investigates an alternative approach - graph contrastive learning in search of a general learning framework for the challenging problem of few-shot node classification and to handle the cases with noisy or no labels during training by examining fundamental research issues and developing new algorithms for supervised, weakly supervised, and self-supervised few-shot node classification. Related work is reviewed, preliminary studies related to each research task are presented, and innovative research tasks are proposed to develop original and systematic solutions. With the proven track record in graph learning and insights gained in the preliminary studies for each proposed research task by the PI’s team, this project is envisioned as laying a solid foundation for graph contrastive learning for few-shot node classification and paving the way to advance the frontier of learning graph data with noisy or no labels during training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是由节点和边组成的数据结构。图数据是与图中的节点和边相关联的数据,并且广泛存在于许多现实世界的应用中。由于用户具有不同的配置文件,因此他们之间可以形成不同的关系(即边缘),当数据集很大时,用基本事实对其进行注释或标记是耗时且费力的。 .对机器的迫切需求有效处理图数据等大数据的学习和数据挖掘是为了解决标记数据稀缺问题,当我们只能标记极少量的数据时,我们可以从大图数据中很好地学习吗?当只有少量数据被标记时,学习就可以发生,这是研究人员努力寻找新解决方案的一个这样的问题。在这样的问题中,训练数据在训练阶段可能会根据标记节点(带有标签)的可用性而变化。 、弱标签或无标签。该项目旨在开发新方法,培养学生进行独立研究、进行科学实验并发表技术成果,以培养科学和工程研究人员接触现实世界问题的核心技术。这项工作的影响还将扩展到对主流方法的批判性思维,理解图形小样本节点分类等难题的本质,并探索考虑现实世界场景的简单有效的解决方案。 - 学习是目前的主要方法,已被证明是有效的该项目质疑这种元学习方法的必要性,并阐述了对少样本节点分类的新型图对比学习方法的需求,以处理有监督的少样本节点分类以及更具挑战性和现实的情况,其中在训练期间仅提供弱监督信息或没有监督信息可用,这提出了一种替代方法 - 图对比学习,以寻找通用学习框架来解决少样本节点调查分类的挑战性问题,并处理训练期间有噪声或无标签的情况。通过检查基础研究问题并开发新算法回顾了相关工作,介绍了与每个研究任务相关的初步研究,并提出了创新的研究任务,以开发原始且系统的解决方案,并在图中得到了可靠的记录。结合 PI 团队在每个提出的研究任务的初步研究中获得的学习和见解,该项目预计将为少样本节点分类的图对比学习奠定坚实的基础,并为推进学习图数据的前沿铺平道路。期间有噪音或没有标签该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supervised Graph Contrastive Learning for Few-Shot Node Classification
用于少样本节点分类的监督图对比学习
- DOI:10.1007/978-3-031-26390-3_24
- 发表时间:2022-03-29
- 期刊:
- 影响因子:0
- 作者:Zhen Tan;Kaize Ding;Ruocheng Guo;Huan Liu
- 通讯作者:Huan Liu
Virtual Node Tuning for Few-shot Node Classification
针对少样本节点分类的虚拟节点调整
- DOI:10.1145/3580305.3599541
- 发表时间:2023-06-09
- 期刊:
- 影响因子:0
- 作者:Zhen Tan;Ruocheng Guo;Kaize Ding;Huan Liu
- 通讯作者:Huan Liu
Inductive Linear Probing for Few-Shot Node Classification
用于少样本节点分类的感应线性探测
- DOI:
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Mathavan, Hirthik;Tan, Zhen;Mudiam, Nivedh;Liu, Huan
- 通讯作者:Liu, Huan
Contrastive Meta-Learning for Few-shot Node Classification
用于少样本节点分类的对比元学习
- DOI:10.1145/3580305.3599288
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Wang, Song;Tan, Zhen;Liu, Huan;Li, Jundong
- 通讯作者:Li, Jundong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huan Liu其他文献
Hydrologic Cycle Optimization Part II: Experiments and Real-World Application
水文循环优化第二部分:实验和实际应用
- DOI:
10.1007/978-3-319-93815-8_34 - 发表时间:
2018-06-17 - 期刊:
- 影响因子:4.1
- 作者:
B. Niu;Huan Liu;Xiaohui Yan - 通讯作者:
Xiaohui Yan
Development of a SIDA-SPE-GC-MS/MS isotope dilution assay for the quantification of eugenol in water samples
开发用于定量水样中丁子香酚的 SIDA-SPE-GC-MS/MS 同位素稀释测定法
- DOI:
10.1111/are.13428 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:2
- 作者:
Huan Liu;Jincheng Li;Chao - 通讯作者:
Chao
Impact of Post Metallization Annealing (PMA) on the Electrical Properties of Ge nMOSFETs with ZrO2 Dielectric
金属化后退火 (PMA) 对采用 ZrO2 电介质的 Gen nMOSFET 电性能的影响
- DOI:
10.1016/j.sse.2022.108240 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:1.7
- 作者:
Lulu Chou;Xiao Yu;Y. Liu;Yang Xu;Yue Peng;Huan Liu;G. Han;Y. Hao - 通讯作者:
Y. Hao
Thresholding
阈值化
- DOI:
10.1007/978-0-387-39940-9_3810 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
H. Hinterberger;J. Domingo;V. Kashyap;V. Khatri;R. Snodgrass;Paolo Terenziani;Manolis Koubarakis;Yue Zhang;James B. D. Joshi;J. Gamper;Michael H. Böhlen;C. S. Jensen;A. Tansel;Michael H. Böhlen;Peter Revesz;Nikos Mamoulis;Jef Wijsen;R. Snodgrass;Claudio Bettini;X. S. Wang;Sushil Jajodia;C. Dyreson;Dengfeng Gao;J. Chomicki;David Toman;Arie Shoshani;Carlo Combi;Richard T. Snodgrass;K. Torp;John F. Roddick;Ulrich Schiel;Sônia Fern;es Silva;es;F. Gr;i;i;Vassilis Plachouras;M. Lalmas;I. A. El;Ben Carterette;Dou Shen;Hua Li;P. Ferragina;Igor Nitto;Li Zhang;Jian;Gonzalo Navarro;Haoda Huang;Benyu Zhang;Edleno Silva De Moura;Yanli Cai;P. Srinivasan;Jun Yan;Jian Hu;Ning Liu;Marcelo Arenas;M. Breunig;Y. Al;G. Samaras;Serguei Mankovskii;Betsy George;Shashi Shekhar;Omar Alonso;Michael Gertz;Angelo Montanari;Peter Øhrstrøm;P. Hasle;N. Lorentzos;Like Gao;James Caverlee;Hans;Amélie Marian;Erik G. Hoel;P. D. Felice;E. Clementini;B. Kemme;Ralf Hartmut Güting;Gottfried Vossen;D. Shasha;A. Reuter;Gustavo Alonso;Heiko Schuldt;Mirella M. Moro;V. Tsotras;Y. Manolopoulos;Y. Theodoridis;Jean;V. Novák;Leila De Floriani;P. Magillo;Maxime Crochemore;Thierry Lecroq;Zoran Despotovic;Nitin Agarwal;Huan Liu;Radu Sion;Philippe Bonnet;R. Fagin;Lei Chen;Jens Lechtenbörger;G. Lausen;G. Amati - 通讯作者:
G. Amati
Simultaneous detection of Cd2+ and Pb2+ in food based on sensing electrode prepared by conductive carbon paper, rGO and CoZn·MOF (CP-rGO-CoZn·MOF).
基于导电碳纸、rGO和CoZn·MOF制备的传感电极(CP-rGO-CoZn·MOF)同时检测食品中的Cd2和Pb2。
- DOI:
10.1016/j.aca.2022.339812 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:6.2
- 作者:
Yanli Qi;Xiaolong Chen;D. Huo;Huan Liu;Mei Yang;Changjun Hou - 通讯作者:
Changjun Hou
Huan Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huan Liu', 18)}}的其他基金
SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
- 批准号:
2335666 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Artificial Intelligence for Cybersecurity Education via a Machine Learning-Enabled Security Knowledge Graph
EAGER:SaTC-EDU:通过机器学习支持的安全知识图进行网络安全教育的人工智能
- 批准号:
2114789 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Discovering and Characterizing Implicit Links in Graph Data
III:小:发现和表征图数据中的隐式链接
- 批准号:
1614576 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Discovering and Characterizing Implicit Links in Graph Data
III:小:发现和表征图数据中的隐式链接
- 批准号:
1614576 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Transforming Feature Selection to Harness the Power of Social Media
III:小:转变特征选择以利用社交媒体的力量
- 批准号:
1217466 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF Conference Sponsorship for the Third International Conference on Social Computing, Behavioral Modeling, and Prediction
NSF 会议赞助第三届社会计算、行为建模和预测国际会议
- 批准号:
1019597 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF Workshop Sponsorship for the Second International Workshop on Social Computing, Behavioral Modeling, and Prediction
NSF 研讨会赞助第二届社会计算、行为建模和预测国际研讨会
- 批准号:
0908506 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III-COR-Small: Beyond Feature Selection and Extraction - An Integrated Framework for High-Dimensional Data of Small Labeled Samples
III-COR-Small:超越特征选择和提取 - 小标记样本高维数据的集成框架
- 批准号:
0812551 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
A Collaborative Project: Development of An Undergraduate Data Mining Course
合作项目:本科数据挖掘课程的开发
- 批准号:
0231448 - 财政年份:2003
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SGER: Toward a Unifying Taxonomy for Feature Selection
SGER:迈向特征选择的统一分类法
- 批准号:
0127815 - 财政年份:2001
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
斑图形成中的小分母问题
- 批准号:12371158
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于深度学习的小物体检测及其异构计算技术研究
- 批准号:61872200
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
多元样条小波、小波框架的构造及其在图形图像处理中的若干应用
- 批准号:60673021
- 批准年份:2006
- 资助金额:23.0 万元
- 项目类别:面上项目
实用多元小波、多小波的构造及其在3D图形图像处理中的应用
- 批准号:60542002
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:专项基金项目
基于新小波的图形特征表示与提取
- 批准号:60403011
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: 3D Graph Neural Networks: Completeness, Efficiency, and Applications
III:小:3D 图神经网络:完整性、效率和应用
- 批准号:
2243850 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316305 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Graph-Oriented Usable Interpretation
合作研究:III:小型:面向图形的可用解释
- 批准号:
2223769 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant