Submerged-Shell Atoms Trapped in Noble Gas Solids for Quantum Information and Measurement

捕获在稀有气体固体中的水下壳原子用于量子信息和测量

基本信息

  • 批准号:
    2310394
  • 负责人:
  • 金额:
    $ 39.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This project will perform optical and infrared spectroscopy of neutral thulium atoms trapped in solidified noble gases, which are chemically inert solids sometimes called cryocrystals. The trapped thulium atoms may be excited with a laser, which allows transition frequencies between the atomic energy levels to be measured. Thulium is chosen because of its unusual electron configuration, which contains valence electrons in the f-shell near the nucleus. Unlike other species whose energy levels are substantially broadened when trapped in a cryocrystal, thulium energy levels are split into resolvable components. This project will employ a new set of spectroscopy techniques to uncover the complete energy level diagram for thulium atoms trapped in solid argon and neon, which paves the way for using their unique properties as probes of the local environment at nanometer scale, or as entangled elements in a quantum device. The project has great potential for broader impacts to quantum information science and measurement, and will contribute to education of students in surface science, cryogenics, optics, and atomic physics.This project is motivated in particular from recent observations that the magnetic dipole transition between f shells at 1140 nm can be as narrow as 1.5 GHz, even when averaged over a population. Furthermore, there is no indication of population inhomogeneity at the GHz scale, suggesting that with further cooling, MHz linewidths might be obtained. This is significantly narrower than, for example, the inhomogeneity in diamond NV centers, which supports the notion, seen in gas phase spectroscopy, that submerged f shells interact much less with the surrounding environment than s or p levels. This suggests a novel platform for quantum information and measurement, where frequency resolution permits detailed optical pumping schemes, even as atoms are held in place at the sub-nanometer scale, co-located with measurement targets, and/or directly integrated into quantum hardware via a universally compatible process requiring a single step: condensing noble gas solids with co-deposition of thulium. In particular, the high density combined with homogeneity are promising for quantum information applications and for observing coherent effects such as superradiance. To investigate these possibilities, a series of experiments will be performed to determine the low-temperature linewidth of thulium in solid argon and neon hosts, to resolve ground state substructure coming from crystal field splitting, to increase the maximum photon cycling rate, and to attempt to sense the environment near a glass substrate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将对被困在固化的贵重气体中的中性thulium原子进行光学和红外光谱,这些原子是化学惰性固体有时称为冷晶的。捕获的Thulium原子可能会用激光激发,从而可以测量原子能级之间的过渡频率。选择Thulium是因为其不寻常的电子构型,该构型在核附近的F壳中包含价电子。与其他物种在捕获冷冻晶体中的能量水平会大大拓宽的其他物种不同,三列族能级分为可分离的成分。该项目将采用一组新的光谱技术来揭示被困在固体氩和霓虹灯中的三个原子的完整能级图,这为使用其独特特性作为纳米尺度上的局部环境探测铺平了道路,或者是量子设备中纠缠的元素。该项目具有对量子信息科学和测量的更广泛影响的巨大潜力,并将有助于对表面科学,低温,光学和原子体物理学中的学生进行教育。该项目尤其是由于最近的观察结果,即在1140 nm处F壳之间的磁偶极转变可以狭窄到1.5 GHz,甚至可以在人口范围内范围。此外,在GHz量表上没有迹象表明人口不均匀性,这表明可能会获得进一步的冷却,MHz线宽可能会得到。这比例如在气相光谱中看到的钻石NV中心中的不均匀性要窄得多,在气相光谱中看到的概念比S或P水平降低了与周围环境的相互作用要少得多。 This suggests a novel platform for quantum information and measurement, where frequency resolution permits detailed optical pumping schemes, even as atoms are held in place at the sub-nanometer scale, co-located with measurement targets, and/or directly integrated into quantum hardware via a universally compatible process requiring a single step: condensing noble gas solids with co-deposition of thulium.特别是,高密度与均匀性相结合对于量子信息应用和观察连贯的效果(例如超沉载)有希望。为了调查这些可能性,将进行一系列实验,以确定固体氩和霓虹灯宿主中菲斯特的低温线宽,以解决来自水晶场分裂的基础状态下结构,以提高最大光子循环速率,并提高使用玻璃基础附近的环境。和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High resolution spectroscopy of thulium atoms implanted in solid noble gas crystals
植入固体惰性气体晶体中的铥原子的高分辨率光谱
  • DOI:
    10.1103/physrevb.108.214101
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gaire, Vinod;Do, Mi Y.;Pei, Yiting;Semenova, Anthony;Parker, Colin V.
  • 通讯作者:
    Parker, Colin V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Parker其他文献

Spatial modulations of electronic states in the pseudogap phase of cuprates : ordering or interference?
铜酸盐赝能隙相中电子态的空间调制:有序还是干扰?
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hashisaka;et. al.;Colin Parker
  • 通讯作者:
    Colin Parker

Colin Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Parker', 18)}}的其他基金

CAREER: A Versatile Quantum Simulator for Fermionic Ordering
职业:费米子有序的多功能量子模拟器
  • 批准号:
    1941985
  • 财政年份:
    2020
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Continuing Grant

相似国自然基金

非晶核壳结构自支撑纳米纤维膜的构筑、单原子修饰及其柔性室温NO2气敏特性研究
  • 批准号:
    12374186
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
离子液体—高熵单原子集成yolk-shell型催化剂的构筑及其串联催化CO2转化研究
  • 批准号:
    22308080
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
超快强软X射线原子分子内壳层激发电离及诱导结构动力学的研究
  • 批准号:
    12334011
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目
基于金属单原子壳层配位结构调控的高比能室温钠硫电池
  • 批准号:
    52372239
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
滴线区原子核的第一性原理Gamow壳模型计算
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coincident estimation of cell elasticity and intracellular pressure by atomic force measurement and its elastic shell theory analysis
原子力测量细胞弹性和细胞内压力的一致估计及其弹性壳理论分析
  • 批准号:
    23H01143
  • 财政年份:
    2023
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the principle of development for closed-shell type of framework-extended polyoxometalates with high catalytic ability
高催化能力闭壳型骨架延伸多金属氧酸盐的开发原理研究
  • 批准号:
    21K05229
  • 财政年份:
    2021
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
原子分解能を有する分子認識ナノワイヤ界面及び新規分子識別センシングデバイスの創製
创建具有原子分辨率的分子识别纳米线接口和新型分子识别传感装置
  • 批准号:
    19J12834
  • 财政年份:
    2019
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Excited state aromaticity in strained 4pi electron ring system: Synthesis and its application to open-shell molecules
应变4pi电子环系统中的激发态芳香性:合成及其在开壳层分子中的应用
  • 批准号:
    18K05073
  • 财政年份:
    2018
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of novel functional molecules with open shell property
具有开壳特性的新型功能分子的创建
  • 批准号:
    17H01193
  • 财政年份:
    2017
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了