Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity

合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程

基本信息

  • 批准号:
    2114920
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

With the rise of social media, cyberharassment has been identified as a critical social-cybersecurity problem. Artificial intelligence (AI) has immense potential to solve this problem by automating detection. Nevertheless, while AI can be a useful tool in the fight against cyberharassment, it is vulnerable to adversarial attacks. In addition, AI-driven cyberharrassment detection models may have embedded social problems, such as fairness and ethics. To advance AI-cybersecurity education, this project will develop curricular modules and hands-on labs. These modules will be based on cutting-edge research on AI-driven cyberharassment detection, related attacks against the AI models, and social issues in AI models for cyberharassment detection. This project will benefit both computer science (CS) and non-CS (e.g., social science) students due to the highly interdisciplinary nature of AI-driven cyberharassment detection . The pervasiveness and severity of cyberharassment in the era of social media makes this project ideal for motivating and educating students about the mutual needs and benefits of AI and social-cybersecurity. This project will attract students with diverse backgrounds (specifically from underrepresented groups) into the AI-cybersecurity field and increase general awareness of cybersecurity and AI. The goal of this project is to transform recent research outcomes in emerging social-cybersecurity into an educational format. This project will develop hands-on labs that cover different dimensions of AI-driven social-cybersecurity and demonstrate the interplay between AI and cybersecurity. The hands-on labs will be integrated into a cloud-based open learning platform, which contains 1) the project team’s homegrown and classic AI-driven cyberharassment detection algorithms; 2) adversarial attacks against these AI algorithms and defenses; and 3) social issues and bias mitigation in AI models. The proposed learning platform will provide students with an in-depth understanding of social-cybersecurity problems and AI techniques through their own experimentation. The project team will develop course materials for both CS and non-CS students and will also develop curriculum materials and organize summer camps for high school students to increase their cybersecurity awareness and interest in the related fields. The cloud-based open labs and learning platform designed in this project will be easily accessed by faculty from other universities. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着社交媒体的兴起,网络骚扰已被认为是一个重要的社会网络安全问题,人工智能(AI)具有通过自动检测解决此问题的巨大潜力,尽管人工智能可以成为对抗网络骚扰的有用工具。此外,人工智能驱动的网络骚扰检测模型可能存在公平和道德等社会问题。为了推进人工智能网络安全教育,该项目将开发课程模块。这些模块将基于人工智能驱动的网络骚扰检测、针对人工智能模型的相关攻击以及网络骚扰检测的人工智能模型中的社会问题的前沿研究。由于人工智能驱动的网络骚扰检测的高度跨学科性质,社交媒体时代网络骚扰的普遍性和严重性使该项目成为计算机科学)和非计算机科学(例如社会科学)学生的理想选择。激励和教育学生了解人工智能和社会网络安全的相互需求和利益。该项目将吸引具有不同背景的学生(特别是来自代表性不足的群体)进入人工智能网络安全领域,并提高对网络安全和人工智能的普遍认识。该项目旨在将新兴社会网络安全的最新研究成果转化为教育形式,该项目将开发涵盖人工智能驱动的社会网络安全不同维度的实践实验室,并展示人工智能与网络安全之间的相互作用。将集成到基于云的开放学习平台,其中包含 1) 项目团队自主开发的经典人工智能驱动的网络骚扰检测算法;2) 针对这些人工智能算法和防御的对抗性攻击;3) 人工智能中的社会问题和偏见缓解;拟议的学习平台将让学生通过自己的实验深入了解社会网络安全问题和人工智能技术。项目团队将为计算机科学和非计算机科学学生开发课程材料。组织为高中生举办夏令营,以提高他们对相关领域的网络安全意识和兴趣。其他大学的教师可以轻松访问该项目中基于云的开放实验室和学习设计平台。安全可信的网络空间 (SaTC) 计划旨在促进网络安全、人工智能和教育领域之间新的、以前未探索过的合作 SaTC 计划与联邦网络安全研究与发展战略计划和国家隐私研究战略保持一致,以保护网络安全。并保护不断发展的社会该奖项反映了 NSF 的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来确保支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long Cheng其他文献

Scalable RDF Data Compression using X10
使用 X10 的可扩展 RDF 数据压缩
  • DOI:
  • 发表时间:
    2014-03-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Cheng;Avinash Malik;S. Kotoulas;Tomas E. Ward;G. Theodoropoulos
  • 通讯作者:
    G. Theodoropoulos
Evaluation and Improvements of Runtime Monitoring Methods for Real-Time Event Streams
实时事件流运行时监控方法的评估和改进
Facile synthesis of multifullerene-OPE hybrids via in situ ethynylation.
通过原位乙炔化轻松合成多富勒烯-OPE 杂化物。
  • DOI:
    10.1021/ol049447t
  • 发表时间:
    2004-05-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Y. Shirai;Yuming Zhao;Long Cheng;J. Tour
  • 通讯作者:
    J. Tour
Using Single-view Observations of Cometary Plasma Tails to Infer Solar Wind Speed
利用彗星等离子体尾部的单视图观测来推断太阳风速
  • DOI:
    10.3847/1538-4357/ac5410
  • 发表时间:
    2022-03-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Cheng;Yuming Wang;Xiaolei Li
  • 通讯作者:
    Xiaolei Li
Offline Practising and Runtime Training Framework for Autonomous Motion Control of Snake Robots
蛇形机器人自主运动控制的离线练习和运行时训练框架

Long Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long Cheng', 18)}}的其他基金

CAREER: Ensuring Privacy, Inclusiveness, and Policy Compliance in the Era of Voice Personal Assistants
职业:确保语音个人助理时代的隐私、包容性和政策合规性
  • 批准号:
    2239605
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: SAI-R: Integrative Cyberinfrastructure for Enhancing and Accelerating Online Abuse Research
合作研究:SAI-R:用于加强和加速在线滥用研究的综合网络基础设施
  • 批准号:
    2228616
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: SAI-R: Integrative Cyberinfrastructure for Enhancing and Accelerating Online Abuse Research
合作研究:SAI-R:用于加强和加速在线滥用研究的综合网络基础设施
  • 批准号:
    2228616
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了