Recycling and separation of critical elements using porous materials
使用多孔材料回收和分离关键元素
基本信息
- 批准号:2028498
- 负责人:
- 金额:$ 34.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Critical metallic elements, such as lithium, rare-earth elements (REEs), cobalt, and aluminum, are non-renewable resources that are vital to modern technologies. For example, lithium is used in batteries for electronic devices and electric vehicles, and REEs are used in jet engines and anti-corrosion coatings for metals. Some critical elements, such as lithium and REEs, are not naturally abundant within the United States, and their supply and cost can be affected by shifting geopolitical factors. Understanding how critical elements can be separated and purified will advance the Nation's economy and security through advancements in mining and recycling of domestic critical elements. However, it is challenging to achieve the separation of critical metal elements with high purities by existing methods. Microporous titanosilicate materials contain unique structural features that are suitable for separating critical metal elements with high purities. Therefore, this research project will use a set of experimental and computational methods to design microporous titanosilicate materials for the highly selective separation of critical elements. The project also involves training students of various educational levels as well as outreach activities that disseminate the research findings to a broader audience from diverse backgrounds.The goal of this research project is to elucidate how the spatial arrangements of ion-adsorption sites in microporous titanosilicates facilitate high-resolution separation of metal ions with very similar properties by continuous ion exchange/continuous ion chromatography (CIX/CIC). Titanosilicates have long-range order ion-adsorption sites inside their micropores, where the micropores are channels with sizes similar to hydrated metal ions. Through material design, these ordered ion-adsorption sites could offer tunability toward metal ion selectivity. The investigators will use a set of experimental and computational methods for different length scales (ion adsorption site, unit cell, and particle scales) to design materials for the separation of REEs and other metal ions. The project will first focus on relating the fine structural features inside titanosilicate pores, such as charged site density and distribution, to REE ion adsorption and separation performance. Structures with different charged site densities will be synthesized and simulated. Ion adsorption equilibrium constants will be measured experimentally as well as computed using density functional theory calculations. Computational methods describing the hydration and dehydration of metal ions inside micropores will be developed. These efforts will lead to recommendations for structural features for separating REE cations. The project will then focus on evaluating the effects of material structure (chemical composition, pore size, and pore topology) on metal ion migration rates and activation energies. This outcome will be achieved by studying ion adsorption and migration on microporous materials of various structures (titanosilicates, clays, and zeolites) using experimental and computational methods. Finally, the project will focus on determining the effect of particle size and morphology on REE adsorption capacity, strength, and kinetics, which will be an important step in preparing these materials for practical applications. This project will provide guidelines for designing microporous materials for separating chemically similar metal ions (such as separating REEs from each other or separating lithium and sodium), which can also be customized based on the feedstock composition and impurities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
关键的金属元素,例如锂,稀土元素(REES),钴和铝,是对现代技术至关重要的不可再生资源。例如,锂用于用于电子设备和电动汽车的电池中,REE用于喷气发动机和金属的抗腐蚀涂料。在美国,某些关键因素(例如锂和里斯)并不自然丰富,它们的供应和成本可能会受到转移地缘政治因素的影响。了解如何将关键要素分开和纯化将通过采矿和回收国内关键要素的进步来推动国家的经济和安全。但是,通过现有方法将关键金属元素分离为高纯度是一个挑战。微孔钛硅酸盐材料包含独特的结构特征,适用于分离具有高纯度的关键金属元件。因此,该研究项目将使用一组实验和计算方法来设计微孔钛硅酸盐材料,以高度选择性地分离关键元素。 The project also involves training students of various educational levels as well as outreach activities that disseminate the research findings to a broader audience from diverse backgrounds.The goal of this research project is to elucidate how the spatial arrangements of ion-adsorption sites in microporous titanosilicates facilitate high-resolution separation of metal ions with very similar properties by continuous ion exchange/continuous ion chromatography (CIX/CIC).钛硅酸盐在其微孔内有长距离的离子吸附位点,其中微孔是与水合金属离子相似的通道。通过材料设计,这些有序的离子吸附位点可以为金属离子选择性提供可调性。研究人员将对不同的长度尺度(离子吸附位点,晶胞和粒子尺度)使用一组实验和计算方法,以设计REE和其他金属离子分离的材料。该项目将首先专注于将钛硅酸盐毛孔内的精细结构特征(例如带电的位点密度和分布)与REE离子吸附和分离性能联系起来。将合成和模拟具有不同电源位点密度的结构。离子吸附平衡常数将在实验中进行测量,并使用密度函数理论计算进行计算。将开发描述微孔体内金属离子的水合和脱水的计算方法。这些努力将为分离REE阳离子的结构特征提供建议。然后,该项目将集中于评估材料结构(化学成分,孔径和孔拓扑)对金属离子迁移速率和激活能的影响。通过使用实验和计算方法研究各种结构(钛,粘土和沸石)的微孔材料的离子吸附和迁移,可以实现此结果。最后,该项目将着重于确定粒度和形态对REE吸附能力,强度和动力学的影响,这将是为实用应用准备这些材料的重要一步。该项目将为设计微孔材料提供指南,以将化学相似的金属离子分开(例如将Rees彼此分离或分离锂和钠),也可以根据原料组成和杂质进行定制,该奖项反映了NSF的法定任务,并通过使用基金会的智能效果进行评估,并通过评估了CRACRIT和BRODIT和广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Janik其他文献
Michael Janik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Janik', 18)}}的其他基金
Collaborative Research: The role of oxide overlayers on adsorbate migration and metal sintering in reactions of CO2
合作研究:氧化物覆盖层对 CO2 反应中吸附物迁移和金属烧结的作用
- 批准号:
2152412 - 财政年份:2022
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions
合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵
- 批准号:
1665155 - 财政年份:2017
- 资助金额:
$ 34.29万 - 项目类别:
Continuing Grant
UNS:Collaborative Reasearch: Hydrocarbon conversion on oxysulfide surfaces: Towards the design of sulfur-tolerant reforming catalysts
UNS:合作研究:硫氧化物表面上的碳氢化合物转化:耐硫重整催化剂的设计
- 批准号:
1510541 - 财政年份:2015
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
- 批准号:
1505607 - 财政年份:2015
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436206 - 财政年份:2014
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
- 批准号:
1263951 - 财政年份:2013
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
REU Site: Chemical Energy Storage and Conversion
REU 站点:化学能存储和转换
- 批准号:
1004826 - 财政年份:2010
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
The role of electrolyte/cathode interfacial structure on performance of proton exchange membrane fuel cells
电解质/阴极界面结构对质子交换膜燃料电池性能的影响
- 批准号:
0730502 - 财政年份:2007
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
相似国自然基金
混合卤化物钙钛矿相分离原子尺度机制
- 批准号:52303294
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YTHDC1-新生RNA相分离促进EZH2介导的前列腺癌进展及去势抵抗的机制研究
- 批准号:82373411
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
调控分子HOMO与LUMO轨道电子分离和增强双激发态贡献协同实现单-三线态能级次序反转的高效率高稳定性蓝光发射材料
- 批准号:62375218
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
红土镍钴矿基储能材料制备过程多相反应耦合及分离强化机制研究
- 批准号:22378244
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
卟啉-苝酰亚胺供受体分子Π-Π共组装增强电荷分离用于光催化全解水
- 批准号:22309093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
- 批准号:
10708534 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Elucidating the role of nonessential amino acid metabolism in diabetic skin wounds
阐明非必需氨基酸代谢在糖尿病皮肤伤口中的作用
- 批准号:
10607579 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Blood DNA Methylation Biomarkers of Post AcuteSequelae of SARS CoV 2 Infection (PASC)
SARS CoV 2 感染后急性后遗症的血液 DNA 甲基化生物标志物 (PASC)
- 批准号:
10730452 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Maternal gut microbiota in fetal programming of neurodevelopment and related disorders
母体肠道微生物群在胎儿神经发育和相关疾病编程中的作用
- 批准号:
10668634 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Precise extraction and separation of critical metals based on the unique intermolecular interactions of hydrophobic deep eutectic solvents
基于疏水性低共熔溶剂独特的分子间相互作用,精确萃取和分离关键金属
- 批准号:
23K19186 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Grant-in-Aid for Research Activity Start-up