Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts

合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面

基本信息

  • 批准号:
    1505607
  • 负责人:
  • 金额:
    $ 26.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalystsThe chemical and thermal stability of metal oxides make them ideal materials for harsh environments and for supporting metals as catalysts in applications such as fuel cells or refinement of chemicals. Under some conditions, the oxide support plays as active role in the chemical process, and in this case understanding the oxide properties is crucial for developing new catalytic systems and determining how they work. Under high oxygen pressure, the metal catalyst particles can oxidize and react with their oxide support to form a mixed metal oxide surface layer to create a system that is very different than that observed on bulk materials. In this collaborative project between the University of South Florida and Pennsylvania State University, Drs. Batzill, Janik and Van Duin are coupling sensitive surface characterization techniques with computational modeling methods that predict the formation of mixed metal oxide surfaces formed by oxidizing transition metals deposited on oxide supports. They predict the oxide phase stability and reactivity in heterogeneous oxidation catalysis, and in the process discover some new catalytic materials with interesting and superior chemical catalytic properties. This research project provides training opportunities for students at high school, undergraduate and graduate levels, and establishes collaborations with Brookhaven National Laboratory. Furthermore, the project is working with existing University programs to increase the number of underrepresented science and engineering advanced degree students.With this award, the Macromolecular, Supramolecular and Nanochemistry (MSN) Program of the Chemistry Division is funding Dr. Batzill of the University of South Florida and Drs. Janik and van Duin of Pennsylvania State University for the investigations of surface-confined mixed-metal oxide phases. The oxide phase of late transition metals in heterogeneous catalysts are the active phase for certain oxidation reactions. The interaction of these oxide phases with another metal oxide support has the potential to lead to novel mixed surface phases that provide additional tunable redox functionality for transition metals supported on oxides. In this project, single atomic layers of oxidized transition metals (e.g. Pd, Co, Ni) are supported on thermodynamically more stable oxides (e.g. ZnO, TiO2) and their stability and chemical functionalities are explored. Combining advanced first principles density functional theory methods with new developments in reactive force field (ReaxFF) Monte Carlo simulations enables them to span length- and time-scales to reach conditions relevant for describing these complex systems in gas environments of various oxygen chemical potentials. Reliable computational tools are essential for screening of materials systems that support the kind of novel monolayer catalysts that then are synthesized and studied experimentally. Single crystalline oxide samples are prepared by pulsed laser deposition under various oxidation environments. The monolayer oxides are investigated with state-of-the-art scanning probe microscopy methods and their chemical functionality probed by a modified molecular beam experiment. Integration of predictive computational tools with experimental verification provides a framework for a quantitative description of the formation of novel single atomic layer, chemically-active oxide phases. This research project provides training opportunities for students at high school, undergraduate and graduate levels, and establishes collaborations with Brookhaven National Laboratory. Furthermore, the project works with existing University programs to increase the number of underrepresented science and engineering advanced degree students.
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面金属氧化物的化学和热稳定性使其成为恶劣环境的理想材料,并在燃料电池或化学品精炼等应用中支撑金属作为催化剂。在某些条件下,氧化物载体在化学过程中发挥着积极作用,在这种情况下,了解氧化物特性对于开发新的催化系统并确定其工作原理至关重要。在高氧压力下,金属催化剂颗粒可以氧化并与其氧化物载体反应,形成混合金属氧化物表面层,从而形成与在散装材料上观察到的非常不同的系统。在南佛罗里达大学和宾夕法尼亚州立大学的这个合作项目中,博士。 Batzill、Janik 和 Van Duin 将敏感的表面表征技术与计算建模方法相结合,预测通过氧化沉积在氧化物载体上的过渡金属而形成的混合金属氧化物表面的形成。 他们预测了多相氧化催化中氧化物相的稳定性和反应活性,并在此过程中发现了一些具有有趣且优异的化学催化性能的新型催化材料。 该研究项目为高中生、本科生和研究生提供培训机会,并与布鲁克海文国家实验室建立合作关系。此外,该项目正在与现有的大学项目合作,以增加代表性不足的科学和工程高级学位学生的数量。通过该奖项,化学系的高分子、超分子和纳米化学(MSN)项目正在资助英国大学的 Batzill 博士。南佛罗里达州和博士。宾夕法尼亚州立大学的 Janik 和 van Duin 对表面限制的混合金属氧化物相进行了研究。非均相催化剂中后过渡金属的氧化物相是某些氧化反应的活性相。这些氧化物相与另一种金属氧化物载体的相互作用有可能产生新型混合表面相,为氧化物负载的过渡金属提供额外的可调节氧化还原功能。在该项目中,氧化过渡金属(例如 Pd、Co、Ni)的单原子层负载在热力学上更稳定的氧化物(例如 ZnO、TiO2)上,并探讨了它们的稳定性和化学功能。将先进的第一原理密度泛函理论方法与反作用力场 (ReaxFF) 蒙特卡罗模拟的新发展相结合,使它们能够跨越长度和时间尺度,以达到在各种氧化学势的气体环境中描述这些复杂系统的相关条件。可靠的计算工具对于筛选支持新型单层催化剂的材料系统至关重要,然后进行合成和实验研究。单晶氧化物样品是在各种氧化环境下通过脉冲激光沉积制备的。采用最先进的扫描探针显微镜方法研究单层氧化物,并通过改进的分子束实验探测其化学功能。预测计算工具与实验验证的集成为定量描述新型单原子层、化学活性氧化物相的形成提供了框架。 该研究项目为高中生、本科生和研究生提供培训机会,并与布鲁克海文国家实验室建立合作关系。此外,该项目与现有的大学项目合作,以增加代表性不足的科学和工程高级学位学生的数量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Janik其他文献

Michael Janik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Janik', 18)}}的其他基金

Collaborative Research: The role of oxide overlayers on adsorbate migration and metal sintering in reactions of CO2
合作研究:氧化物覆盖层对 CO2 反应中吸附物迁移和金属烧结的作用
  • 批准号:
    2152412
  • 财政年份:
    2022
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Recycling and separation of critical elements using porous materials
使用多孔材料回收和分离关键元素
  • 批准号:
    2028498
  • 财政年份:
    2020
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions
合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵
  • 批准号:
    1665155
  • 财政年份:
    2017
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
UNS:Collaborative Reasearch: Hydrocarbon conversion on oxysulfide surfaces: Towards the design of sulfur-tolerant reforming catalysts
UNS:合作研究:硫氧化物表面上的碳氢化合物转化:耐硫重整催化剂的设计
  • 批准号:
    1510541
  • 财政年份:
    2015
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436206
  • 财政年份:
    2014
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
  • 批准号:
    1263951
  • 财政年份:
    2013
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
REU Site: Chemical Energy Storage and Conversion
REU 站点:化学能存储和转换
  • 批准号:
    1004826
  • 财政年份:
    2010
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
The role of electrolyte/cathode interfacial structure on performance of proton exchange membrane fuel cells
电解质/阴极界面结构对质子交换膜燃料电池性能的影响
  • 批准号:
    0730502
  • 财政年份:
    2007
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant

相似国自然基金

修改引力理论中带毛黑洞的后牛顿引力波的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
修改引力理论下旋近和铃宕阶段的引力波研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
修改引力理论中与极端质量比旋近相关问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
修改引力框架下暗物质候选者物质场在膜上的局域化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
修改引力理论中的致密星、黑洞熵以及圈量子宇宙学的研究
  • 批准号:
    12147167
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: Adapted Measure of Math Engagement: Modifying a self-report measure of Black and Latina/o middle school students’ math engagement
合作研究:数学参与度的适应性衡量:修改黑人和拉丁裔中学生数学参与度的自我报告衡量标准
  • 批准号:
    2200438
  • 财政年份:
    2022
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
  • 批准号:
    1505609
  • 财政年份:
    2015
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Development of teacher training by utilizing typed class with collaborative learning support tool and blended learning
利用类型化课堂、协作学习支持工具和混合式学习开展教师培训
  • 批准号:
    15H02919
  • 财政年份:
    2015
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Arabidopsis 2010 Project: Collaborative Research: A Functional Genomics Approach to N-terminal Modifying Enzymes
拟南芥 2010 项目:合作研究:N 端修饰酶的功能基因组学方法
  • 批准号:
    0313583
  • 财政年份:
    2003
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Morphable Software Sevices: Self-Modifying Programs for Distributed Embedded Systems
ITR:协作研究:可变形软件服务:分布式嵌入式系统的自修改程序
  • 批准号:
    0324969
  • 财政年份:
    2003
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了