DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions

DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计

基本信息

  • 批准号:
    1436206
  • 负责人:
  • 金额:
    $ 45.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In order to support world needs, we depend on certain commercial reaction systems that consume a significant fraction of the world's energy resources, such as for the production of ammonia fertilizers from nitrogen gas. This is because one single catalyst material is not optimal for all the elementary reaction steps that are required for a conversion. The current catalyst system is the best compromise, but is inefficient. Improving upon this energy-costly situation through application of new catalyst materials is a daunting challenge, however. Under the National Science Foundation initiative titled Designing Materials to Revolutionize and Engineer our Future, an award is being made to a collaborative team of Profs. Michael Janik (Pennsylvania State University), Suljo Linic (University of Michigan), Will Medlin (University of Colorado) and Eranda Nikolla (Wayne State University) to develop new multicomponent catalyst materials that will allow greater efficiency in energy-demanding reaction schemes. The research team proposes that new cascade catalyst materials be prepared by nanoscale synthesis techniques to link the multiple components that have different functions in an overall reaction. Close linking of these catalytic material components, in principle, can reduce the formation of unwanted and environmentally hazardous byproducts and decrease the required energy input for necessary chemical reactions. While the research team has demonstrated the concepts required to construct the individual catalyst features required for this approach, predictive models are needed to guide the design of how to link these components to result in an improved process. This project will develop the multi-scale models necessary to design complex catalyst assemblies. These models will be validated and refined through experimental testing of catalyst materials defined by computational designs. An alternative approach to catalytic conversion will be developed using multi-component, multi-active site materials. Communication between active sites will be controlled by the selective transport of energetic intermediates. A computationally-guided design framework will 1) utilize atomistic and electronic structure methods to optimize individual catalytic components, and 2) construct a coupled microkinetic/transport model to guide construction of the multi-component material. Synthesis, fabrication, characterization, and reactivity studies will validate computational models and realize the enhancements offered by the catalysts. Initial catalyst development efforts will concentrate on ammonia synthesis, using one site to generate active proton and electron intermediates that transport to a second site to reduce nitrogen. Transferability of the design approach will be demonstrated by applying it to design cascades for selective oxidation of biomass-derived species in alkaline systems. The computationally guided design of inorganic catalytic cascade systems will both demonstrate the potential of these multi-component materials to provide efficient catalytic processes and provide a design framework for rapid acceleration of their development. The research will be integrated with educational and outreach activities to broaden the impact of the proposed work. Undergraduate researchers drawn from programs that target underrepresented groups will be integrated into research efforts at the four partner institutions, involving these students in multi-disciplinary work with exposure to the collaborative team. Research groups at each institution will participate in science outreach activities targeted at preschool through K-12 groups, such as Central Pennsylvania's "Exploration Days" and the Michigan Science Center's "Ask the Expert" series. The collaborative group plan coordinated course offerings among the partner institutions, which will provide opportunities for collaborative teaching, specifically aimed at integrating active learning tools at all the institutions.
为了满足世界的需求,我们依赖某些商业反应系统,这些系统消耗了世界能源的很大一部分,例如用氮气生产氨肥。这是因为一种单一催化剂材料对于转化所需的所有基本反应步骤来说并不是最佳的。目前的催化剂系统是最好的折衷方案,但效率低下。然而,通过应用新的催化剂材料来改善这种能源昂贵的状况是一项艰巨的挑战。根据国家科学基金会题为“设计材料以彻底改变和设计我们的未来”的倡议,一个奖项正在颁发给由教授组成的合作团队。 Michael Janik(宾夕法尼亚州立大学)、Suljo Linic(密歇根大学)、Will Medlin(科罗拉多大学)和 Eranda Nikolla(韦恩州立大学)共同开发新型多组分催化剂材料,以提高能源需求反应方案的效率。研究小组提出通过纳米级合成技术制备新型级联催化剂材料,将在整个反应中具有不同功能的多种组分连接起来。 原则上,这些催化材料成分的紧密连接可以减少不需要的且对环境有害的副产物的形成,并减少必要的化学反应所需的能量输入。虽然研究团队已经展示了构建该方法所需的各个催化剂功能所需的概念,但仍需要预测模型来指导设计如何链接这些组件以改进工艺。该项目将开发设计复杂催化剂组件所需的多尺度模型。 这些模型将通过计算设计定义的催化剂材料的实验测试进行验证和完善。将使用多组分、多活性位点材料开发另一种催化转化方法。活性位点之间的通讯将由高能中间体的选择性运输控制。计算引导的设计框架将1)利用原子和电子结构方法来优化各个催化组分,2)构建耦合的微动力学/传输模型以指导多组分材料的构建。合成、制造、表征和反应性研究将验证计算模型并实现催化剂提供的增强功能。最初的催化剂开发工作将集中在氨合成上,利用一个位点生成活性质子和电子中间体,将其传输到第二个位点以还原氮。该设计方法的可移植性将通过将其应用于碱性系统中生物质衍生物质的选择性氧化级联设计来证明。 无机催化级联系统的计算引导设计将证明这些多组分材料提供高效催化过程的潜力,并为其快速加速开发提供设计框架。该研究将与教育和外展活动相结合,以扩大拟议工作的影响。来自针对代表性不足群体的项目的本科研究人员将被纳入四个合作机构的研究工作中,让这些学生参与多学科工作并接触协作团队。每个机构的研究小组将参加针对学前班到 K-12 群体的科学推广活动,例如宾夕法尼亚州中部的“探索日”和密歇根科学中心的“询问专家”系列。该协作小组计划协调合作伙伴机构之间的课程设置,这将为协作教学提供机会,特别旨在整合所有机构的主动学习工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Janik其他文献

Michael Janik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Janik', 18)}}的其他基金

Collaborative Research: The role of oxide overlayers on adsorbate migration and metal sintering in reactions of CO2
合作研究:氧化物覆盖层对 CO2 反应中吸附物迁移和金属烧结的作用
  • 批准号:
    2152412
  • 财政年份:
    2022
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Recycling and separation of critical elements using porous materials
使用多孔材料回收和分离关键元素
  • 批准号:
    2028498
  • 财政年份:
    2020
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions
合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵
  • 批准号:
    1665155
  • 财政年份:
    2017
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Continuing Grant
UNS:Collaborative Reasearch: Hydrocarbon conversion on oxysulfide surfaces: Towards the design of sulfur-tolerant reforming catalysts
UNS:合作研究:硫氧化物表面上的碳氢化合物转化:耐硫重整催化剂的设计
  • 批准号:
    1510541
  • 财政年份:
    2015
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
  • 批准号:
    1505607
  • 财政年份:
    2015
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
  • 批准号:
    1263951
  • 财政年份:
    2013
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
REU Site: Chemical Energy Storage and Conversion
REU 站点:化学能存储和转换
  • 批准号:
    1004826
  • 财政年份:
    2010
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
The role of electrolyte/cathode interfacial structure on performance of proton exchange membrane fuel cells
电解质/阴极界面结构对质子交换膜燃料电池性能的影响
  • 批准号:
    0730502
  • 财政年份:
    2007
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 45.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了