Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
基本信息
- 批准号:1263951
- 负责人:
- 金额:$ 22.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTCollaborative Proposals #1264104 - Susan B. Sinnott #1263951 - Michael J. Janik Scientific Merit: As traditional fossil fuel sources of energy are depleted, new energy conversion and chemical energy storage approaches will be needed to supply energy for both portable and stationary applications. Fuel cells offer efficient conversion of chemical to electrical energy. Electrolysis applications reverse this process and store electricity from renewable sources, such as the wind or sun, in chemical form for later use. The efficiency of converting energy between chemical and electrical forms is dictated by atomistic processes that occur at device electrodes. These processes are difficult to probe with conventional experiments. The characterization of these processes is enabled using atomic and quantum level computational methods. There are two major limitations in current modeling approaches for evaluating reactivity of electrode surfaces: the inability to estimate rates for electron transfer reactions and the lack of atomistic force fields that can describe chemical reactions and charge transfer, yet retain the thickness required to capture relevant interfacial phenomena. Professors Michael Janik and Janna Maranas of Pennsylvania State University and Susan Sinnott of the University of Florida have received an award from the National Science Foundation Catalysis & Biocatalysis Program to tackle these limitations. The first limitation will be addressed through the development of a transferable method for electron transfer rate constants using methods based on quantum mechanics. This method will be applied and validated versus experimental data for the carbon dioxide reduction reaction (of relevance for converting electrical energy and waste carbon dioxide into a chemical fuel) and the oxygen reduction reaction (of relevance in fuel cells). The method will be further applied, in collaboration with experiment, to evaluate the reaction mechanism in the electrocatalytic synthesis of high value chemicals from bio-derived feedstock. The second limitation will be addressed through a reactive molecular force field with variable partial charges for both electrode and solvent. Charge optimized many-body reactive potentials will be developed for copper and platinum electrodes in contact with alkali hydroxide electrolytes. Molecular dynamics calculations will evaluate electrochemical interface, including solvent structure and charge distribution. These multiscale atomistic modeling tools enable definitive identification of electrochemical reaction mechanisms. They will be applied to three specific electrocatalytic applications to evaluate a series of reaction specific hypotheses. Broader Impacts: The broader impacts of this work secure a clean energy future in which renewable energy and chemical energy storage work together to provide an efficient, practical approach to sustainable energy. This project develops a joint quantum chemistry and reactive molecular dynamics framework to model electrochemical interfaces, facilitating rational design of materials for improved batteries, fuel cells, and grid-level electrochemical energy storage. With this in mind, educational activities are designed to motivate students to pursue careers in energy related fields. Graduate students will benefit from an inter-disciplinary research project at two universities, and become skilled in multiple computer simulation methods. Portions of the proposed work will be packaged as undergraduate projects at both Penn State and the University of Florida, including underrepresented groups through the Penn State Minority Undergraduate Research Experience and Women in Science and Engineering Research programs. Research opportunities will be provided to high school students through the U. of Florida. The developed computer simulation methods will be broadly distributed to the computational community, allowing others to apply the techniques developed to electrochemical problems outside the scope of this proposal.
摘要企业提案#1264104 -Susan B. Sinnott#1263951 -Michael J. Janik Scientific Feerit:由于传统的化石燃料能源被耗尽,因此将需要新的能源转换和化学能源存储方法来为便携式和固定应用提供能源。 燃料电池可有效地转化化学能源为电能。 电解应用逆转了此过程,并以化学形式从可再生能源(例如风或太阳)中存储电力,以供以后使用。 化学和电形式之间能量转化的效率取决于设备电极处发生的原子过程。这些过程很难通过常规实验进行探测。这些过程的表征是使用原子和量子级计算方法启用的。当前建模方法评估电极表面的反应性有两个主要局限性:无法估计电子转移反应的速率以及缺乏可以描述化学反应和电荷转移的原子力场,但保留了捕获相关界面现象所需的厚度。宾夕法尼亚州立大学的迈克尔·贾尼克(Michael Janik)和詹娜·马拉纳斯(Janna Maranas)和佛罗里达大学的苏珊·辛诺特(Susan Sinnott)获得了国家科学基金会催化与生物催化计划的奖励,以应对这些限制。第一个限制将通过使用基于量子力学的方法开发电子传输速率常数的可转移方法来解决。 该方法将用于二氧化碳还原反应(将电能和废物二氧化碳转换为化学燃料的相关性)和氧还原反应(燃料电池中的相关性)。 该方法将与实验合作进一步应用,以评估来自生物衍生原料的高价值化学物质的电催化合成中的反应机理。 第二个限制将通过反应性分子力场来解决,并具有可变的部分电荷的电极和溶剂。 电荷优化的多体反应电位将用于与碱氢氧化物电解质接触的铜和铂电极。 分子动力学计算将评估电化学界面,包括溶剂结构和电荷分布。 这些多尺度原子建模工具可实现电化学反应机制的明确识别。它们将应用于三个特定的电催化应用,以评估一系列反应特定的假设。更广泛的影响:这项工作的更广泛的影响确保了清洁能源的未来,可再生能源和化学能源储存共同提供了一种可持续能源的有效,实用的方法。该项目开发了一个联合量子化学和反应性分子动力学框架,以建模电化学接口,促进改进电池,燃料电池和网格级电化学能源存储的材料的合理设计。 考虑到这一点,教育活动旨在激励学生从事与能源有关的领域的职业。 研究生将从两所大学的跨学科研究项目中受益,并熟练使用多种计算机模拟方法。 拟议工作的一部分将在宾夕法尼亚州立大学和佛罗里达大学作为本科项目,包括通过宾夕法尼亚州少数群体本科生研究经验以及科学与工程研究计划中的妇女的代表性群体。 通过佛罗里达大学,将向高中生提供研究机会。 开发的计算机仿真方法将广泛分发给计算界,使其他人能够将开发的技术应用于本提案范围之外的电化学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Janik其他文献
Michael Janik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Janik', 18)}}的其他基金
Collaborative Research: The role of oxide overlayers on adsorbate migration and metal sintering in reactions of CO2
合作研究:氧化物覆盖层对 CO2 反应中吸附物迁移和金属烧结的作用
- 批准号:
2152412 - 财政年份:2022
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Recycling and separation of critical elements using porous materials
使用多孔材料回收和分离关键元素
- 批准号:
2028498 - 财政年份:2020
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions
合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵
- 批准号:
1665155 - 财政年份:2017
- 资助金额:
$ 22.65万 - 项目类别:
Continuing Grant
UNS:Collaborative Reasearch: Hydrocarbon conversion on oxysulfide surfaces: Towards the design of sulfur-tolerant reforming catalysts
UNS:合作研究:硫氧化物表面上的碳氢化合物转化:耐硫重整催化剂的设计
- 批准号:
1510541 - 财政年份:2015
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
- 批准号:
1505607 - 财政年份:2015
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436206 - 财政年份:2014
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
REU Site: Chemical Energy Storage and Conversion
REU 站点:化学能存储和转换
- 批准号:
1004826 - 财政年份:2010
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
The role of electrolyte/cathode interfacial structure on performance of proton exchange membrane fuel cells
电解质/阴极界面结构对质子交换膜燃料电池性能的影响
- 批准号:
0730502 - 财政年份:2007
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
相似国自然基金
滇中城市群“三生空间”多尺度耦合及多目标协同优化研究
- 批准号:42301304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于影像-基因-临床多尺度弥漫性大B细胞淋巴瘤复发及预后风险精准量化评估研究
- 批准号:82372025
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于类蛋白结构纳米凝胶的多尺度高分子材料构筑及强韧化机制研究
- 批准号:22371300
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型胶体电解液的设计构筑及其对多尺度传质与电化学性能研究
- 批准号:22378139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 22.65万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant