The role of electrolyte/cathode interfacial structure on performance of proton exchange membrane fuel cells

电解质/阴极界面结构对质子交换膜燃料电池性能的影响

基本信息

  • 批准号:
    0730502
  • 负责人:
  • 金额:
    $ 31.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Proton exchange membrane fuel cells are an alternative energy conversion device that may efficiently convert chemical energy to electrical energy for use as motive power in transportation applications. Inefficiencies in these devices are associated with the energetics of specific chemical processes and constrain their performance. The current state-of-the-art devices can not simultaneously meet efficiency, power output, cost, and durability targets. A majority of the performance losses are allocated to processes at the oxygen reduction cathode, where power/efficiency losses, non-optimum utilization of expensive platinum catalyst, and sensitivity to the reactant oxygen stream relative humidity challenge the development of practical devices. These losses can, in part, be attributed to imperfect design of the Pt catalyst particle-polymer electrolyte interface. However, current attempts to improve the design of this interface are limited by a lack of fundamental understanding of its role in dictating device performance. The complexity inherent in this interface and the need to characterize it under operating conditions limit the ability of experimental techniques to link interfacial structure to PEMFC performance.Intellectual Merit: The research objectives of the proposed work are to (1) appropriately model the membrane/cathode electrocatalytic interface in a proton exchange membrane fuel cell (PEMFC) using both molecular dynamics and quantum-mechanical methods; (2) to describe the influence of humidity and electrochemical potential on the structure of this interface and on oxygen reduction reaction kinetics; and (3) to estimate the losses in PEMFC performance due to a non-ideal electrolyte/electrode interfacial structure. A propose multi-scaled, integrated molecular modeling approach to understand the influence of electrode/electrolyte interfacial structure on oxygen reduction reaction rates is proposed. Molecular dynamics (MD) will be used to probe the structure of this interface as a function of electrode potential and hydration. Quantum-mechanical (QM) methods will be used to quantify the dependence of the elementary oxygen reduction reaction kinetics on this interfacial structure. Method advances in both the application of MD and QM methods to the electrochemical interface will be developed. Collectively, these methods will establish the rate of reaction as a function of hydration and electrode potential, which is directly linked to the PEMFC efficiency and power output. Therefore, the structure of this interface can be linked to PEMFC performance losses thus providing the fundamental structure-performance relationships needed to improve device design. Broader Impact: The proposed work will (1) integrate research efforts in the molecular modeling of energy conversion devices currently concentrating separately on membrane materials and electrode design by probing the interface between these components; (2) enhance ongoing research by training graduate students in the application of molecular modeling techniques to the study of energy conversion processes; and (3) to extend this training beyond the perspective research groups through the development of an advanced course in this area; to involve undergraduates from under-represented groups in research using molecular modeling techniques early in their collegiate careers . An advanced course in molecular modeling emphasizing energy applications will be developed. The modules developed for this course will be made available and publicized to the technical community. Graduate student researchers will receive advanced technical training with additional emphasis on the effective communication of research results. Additionally, components of the proposed study will be offered as research projects through established Penn State programs to recruit and motivate women and minority undergraduate students towards research careers utilizing computational techniques.
质子交换膜燃料电池是一种替代能源转换装置,可以有效地将化学能转换为电能,用作运输应用中的动力。这些设备的低效率与特定化学过程的能量有关,并限制了它们的性能。 当前最先进的设备无法同时满足效率、功率输出、成本和耐用性目标。大部分性能损失都归因于氧还原阴极的过程,其中功率/效率损失、昂贵的铂催化剂的非最佳利用以及对反应物氧气流相对湿度的敏感性对实际设备的开发提出了挑战。这些损失部分归因于铂催化剂颗粒-聚合物电解质界面的不完善设计。然而,由于缺乏对其在决定设备性能方面的作用的基本了解,当前改进该接口设计的尝试受到限制。该界面固有的复杂性以及在操作条件下对其进行表征的需要限制了实验技术将界面结构与 PEMFC 性能联系起来的能力。 智力优点:本项工作的研究目标是 (1) 适当地模拟膜/阴极使用分子动力学和量子力学方法的质子交换膜燃料电池(PEMFC)中的电催化界面; (2)描述湿度和电化学势对该界面结构和氧还原反应动力学的影响; (3) 估计由于非理想电解质/电极界面结构导致的 PEMFC 性能损失。提出了一种多尺度、集成分子建模方法来了解电极/电解质界面结构对氧还原反应速率的影响。分子动力学(MD)将用于探测该界面的结构作为电极电位和水合的函数。量子力学(QM)方法将用于量化元素氧还原反应动力学对该界面结构的依赖性。 MD 和 QM 方法在电化学界面应用方面的方法进展将得到发展。总的来说,这些方法将建立作为水合和电极电势函数的反应速率,这与质子交换膜燃料电池的效率和功率输出直接相关。因此,该界面的结构可以与 PEMFC 性能损失联系起来,从而提供改进设备设计所需的基本结构-性能关系。更广泛的影响:拟议的工作将(1)通过探测这些组件之间的界面,整合目前分别专注于膜材料和电极设计的能量转换装置分子建模的研究工作; (2) 通过培训研究生应用分子建模技术来研究能量转换过程,加强正在进行的研究; (3) 通过开发该领域的高级课程,将培训扩展到前瞻性研究小组之外;让来自代表性不足群体的本科生在大学生涯早期使用分子建模技术进行研究。 将开发强调能源应用的分子建模高级课程。 为本课程开发的模块将向技术社区提供和公布。研究生研究人员将接受先进的技术培训,并特别强调研究成果的有效交流。此外,拟议研究的组成部分将通过宾夕法尼亚州立大学已建立的项目作为研究项目提供,以招募和激励女性和少数族裔本科生利用计算技术从事研究职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Janik其他文献

Michael Janik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Janik', 18)}}的其他基金

Collaborative Research: The role of oxide overlayers on adsorbate migration and metal sintering in reactions of CO2
合作研究:氧化物覆盖层对 CO2 反应中吸附物迁移和金属烧结的作用
  • 批准号:
    2152412
  • 财政年份:
    2022
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
Recycling and separation of critical elements using porous materials
使用多孔材料回收和分离关键元素
  • 批准号:
    2028498
  • 财政年份:
    2020
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions
合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵
  • 批准号:
    1665155
  • 财政年份:
    2017
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Continuing Grant
UNS:Collaborative Reasearch: Hydrocarbon conversion on oxysulfide surfaces: Towards the design of sulfur-tolerant reforming catalysts
UNS:合作研究:硫氧化物表面上的碳氢化合物转化:耐硫重整催化剂的设计
  • 批准号:
    1510541
  • 财政年份:
    2015
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
  • 批准号:
    1505607
  • 财政年份:
    2015
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436206
  • 财政年份:
    2014
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
  • 批准号:
    1263951
  • 财政年份:
    2013
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
REU Site: Chemical Energy Storage and Conversion
REU 站点:化学能存储和转换
  • 批准号:
    1004826
  • 财政年份:
    2010
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant

相似国自然基金

基于复合电解质型低温固体氧化物燃料电池构筑单相三重传导钙钛矿型阴极材料
  • 批准号:
    22108043
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高孔隙率纳米纤维膜的SOFC阴极及其与电解质层互联结构的闪烧机制和性能研究
  • 批准号:
    52072238
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
原位构筑锰酸锶镧-掺杂氧化铋复合阴极/电解质界面的机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
具有同质异构一体化特征的非碳基全固态锂空气电池的构筑及其界面电荷输运机制研究
  • 批准号:
    21878232
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
孔尺寸可控的MOF衍生金属氮碳材料的制备及其孔道限域效应研究
  • 批准号:
    21805244
  • 批准年份:
    2018
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cathode-solid electrolyte interface in solid-state batteries
固态电池中的阴极-固体电解质界面
  • 批准号:
    2839395
  • 财政年份:
    2022
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Studentship
Understanding interphase layer formation at the cathode/solid-electrolyte junction
了解阴极/固体电解质连接处的界面层形成
  • 批准号:
    2219060
  • 财政年份:
    2022
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
Control of Li-ion Desolvation at the Interface between Cathode and Liquid Electrolyte using Metal Organic Frameworks
使用金属有机框架控制正极和液体电解质之间界面的锂离子去溶剂化
  • 批准号:
    21K14727
  • 财政年份:
    2021
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Control of High Capacity Cathode Reaction of Lithium Secondary Batteries by Construction of Solid Electrolyte/Electrode Interface
通过构建固体电解质/电极界面控制锂二次电池高容量阴极反应
  • 批准号:
    19K15658
  • 财政年份:
    2019
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Probing and Tailoring the Cathode-Electrolyte Interfacial Chemistries for Sodium Ion Batteries
合作研究:探索和定制钠离子电池的阴极-电解质界面化学
  • 批准号:
    1912876
  • 财政年份:
    2019
  • 资助金额:
    $ 31.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了