Collaborative Research: NRI: FND: Graph Neural Networks for Multi-Object Manipulation
合作研究:NRI:FND:用于多对象操作的图神经网络
基本信息
- 批准号:2024057
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For robots to act as ubiquitous assistants in daily life, they must regularly contend with environments involving many objects and objects built of many constituent parts. Current robotics research focuses on providing solutions to isolated manipulation tasks, developing specialized representations that do not readily work across tasks. This project seeks to enable robots to learn to represent and understand the world from multiple sensors, across many manipulation tasks. Specifically, the project will examine tasks in heavily cluttered environments that require multiple distinct picking and placing actions. This project will develop autonomous manipulation methods suitable for use in robotic assistants. Assistive robots stand to make a substantial impact in increasing the quality of life of older adults and persons with certain degenerative diseases. These methods also apply to manipulation in natural or man-made disasters areas, where explicit object models are not available. The tools developed in this project can also improve robot perception, grasping, and multi-step manipulation skills for manufacturing. With their ability to learn powerful representations from raw perceptual data, deep neural networks provide the most promising framework to approach key perceptual and reasoning challenges underlying autonomous robot manipulation. Despite their success, existing approaches scale poorly to the diverse set of scenarios autonomous robots will handle in natural environments. These current limitations of neural networks arise from being trained on isolated tasks, use of different architectures for different problems, and inability to scale to complex scenes containing a varying or large number of objects. This project hypothesizes that graph neural networks provide a powerful framework that can encode multiple sensor streams over time to provide robots with rich and scalable representations for multi-object and multi-task perception and manipulation. This project examines a number of extensions to graph neural networks in order to address current limitations for their use in autonomous manipulation. Furthermore this project examines novel ways of leveraging learned graph neural networks for manipulation planning and control in clutter and for multi-step, multi-object manipulation tasks. In order to train these large-scale graph net representations this project will use extremely large scale, physically accurate, photo-realistic simulation. All perceptual and behavior generation techniques developed in this project will be experimentally validated on a set of challenging real-world manipulation tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了使机器人在日常生活中充当无处不在的助手,他们必须定期包含涉及许多组成部分的许多物体和物体的环境。当前的机器人研究重点是为孤立的操纵任务提供解决方案,开发了不容易跨任务工作的专门表示。该项目旨在使机器人能够在许多操纵任务中学会从多个传感器中代表和理解世界。具体而言,该项目将检查在杂乱无章的环境中的任务,这些任务需要多个不同的选择和放置操作。该项目将开发适用于机器人助手的自主操纵方法。辅助机器人将对增加老年人和某些退化性疾病的人的生活质量产生次要影响。这些方法还适用于在没有明确对象模型的自然或人为灾难区域的操纵。该项目中开发的工具还可以改善机器人的感知,抓握和多步制造技巧。深层神经网络具有从原始感知数据中学习强大的表示的能力,提供了最有希望的框架,以应对自动驾驶机器人操纵的关键感知和推理挑战。尽管它们成功了,但现有方法的扩展很差,而不是对神经元网络的当前局限性的自主机器人组合,这是由于接受隔离任务的培训,使用不同的架构来解决不同的问题,并且无法扩展到包含各种物体或大量对象的复杂风景。该项目假设图形神经元网络提供了一个强大的框架,可以随着时间的推移编码多个传感器流,以为机器人提供丰富而可扩展的表示,以用于多任务和多任务感知和操作。该项目检查了图形中性网络的许多扩展,以解决其在自动操作中使用的当前限制。此外,该项目还研究了利用学习的图形中性网络的新颖方式,以在混乱中进行操纵计划和控制,并进行多步,多对象的操纵任务。为了训练这些大规模的图表净表示,该项目将使用非常大规模的,物理上精确的照片现实模拟。该项目中开发的所有知觉和行为产生技术将在一组挑战者现实世界中的操纵任务上进行实验验证。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和更广泛的影响来评估标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unseen Object Instance Segmentation for Robotic Environments
- DOI:10.1109/tro.2021.3060341
- 发表时间:2020-07
- 期刊:
- 影响因子:7.8
- 作者:Christopher Xie;Yu Xiang;Arsalan Mousavian;D. Fox
- 通讯作者:Christopher Xie;Yu Xiang;Arsalan Mousavian;D. Fox
M2T2: Multi-Task Masked Transformer for Object-centric Pick and Place
- DOI:10.48550/arxiv.2311.00926
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Wentao Yuan;Adithyavairavan Murali;Arsalan Mousavian;Dieter Fox
- 通讯作者:Wentao Yuan;Adithyavairavan Murali;Arsalan Mousavian;Dieter Fox
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
学习用于看不见的对象实例分割的 RGB-D 特征嵌入
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xiang, Yu;Xie, Christopher;Mousavian, Arsalan;Fox, Dieter
- 通讯作者:Fox, Dieter
RICE: Refining Instance Masks in Cluttered Environments with Graph Neural Networks
RICE:使用图神经网络在杂乱的环境中细化实例掩码
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xie, Christopher;Mousavian, Arsalan;Xiang, Yu;Fox, Dieter
- 通讯作者:Fox, Dieter
SORNet: Spatial object-centric representations for sequential manipulation
SORNet:用于顺序操作的以空间对象为中心的表示
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yuan, Wentao;Paxton, Chris;Desingh, Karthik;Fox, Dieter
- 通讯作者:Fox, Dieter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dieter Fox其他文献
Manipulate-Anything: Automating Real-World Robots using Vision-Language Models
操控一切:使用视觉语言模型实现现实世界机器人的自动化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jiafei Duan;Wentao Yuan;Wilbert Pumacay;Yi Ru Wang;Kiana Ehsani;Dieter Fox;Ranjay Krishna - 通讯作者:
Ranjay Krishna
Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM
使用 EM 基于声纳的大型移动机器人环境测绘
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Wolfram Burgard;Dieter Fox;Hauke Jans;Christian Matenar;Sebastian Thrun - 通讯作者:
Sebastian Thrun
PerAct2: A Perceiver Actor Framework for Bimanual Manipulation Tasks
PerAct2:用于双手操作任务的感知者参与者框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Markus Grotz;Mohit Shridhar;Tamim Asfour;Dieter Fox - 通讯作者:
Dieter Fox
Fast Joint Space Model-Predictive Control for Reactive Manipulation
快速关节空间模型-反应操纵的预测控制
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
M. Bhardwaj;Balakumar Sundaralingam;Arsalan Mousavian;Nathan D. Ratliff;Dieter Fox;Fabio Ramos;Byron Boots - 通讯作者:
Byron Boots
RVT-2: Learning Precise Manipulation from Few Demonstrations
RVT-2:从少量演示中学习精确操作
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ankit Goyal;Valts Blukis;Jie Xu;Yijie Guo;Yu;Dieter Fox - 通讯作者:
Dieter Fox
Dieter Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dieter Fox', 18)}}的其他基金
NRI: Collaborative Research: Experiential Learning for Robots: From Physics to Actions to Tasks
NRI:协作研究:机器人的体验式学习:从物理到动作再到任务
- 批准号:
1637479 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
NRI: Rich Task Perception for Programming by Demonstration
NRI:演示编程的丰富任务感知
- 批准号:
1525251 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
NRI-Large: Collaborative Research: Purposeful Prediction: Co-robot Interaction via Understanding Intent and Goals
NRI-Large:协作研究:有目的的预测:通过理解意图和目标进行协作机器人交互
- 批准号:
1227234 - 财政年份:2012
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
RI-Small: Statistical Relational Models for Semantic Robot Mapping
RI-Small:语义机器人映射的统计关系模型
- 批准号:
0812671 - 财政年份:2008
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Collaborative Research: BPC-A: ARTSI: Advancing Robotics Technology for Societal Impact
合作研究:BPC-A:ARTSI:推进机器人技术以产生社会影响
- 批准号:
0742075 - 财政年份:2007
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Probabilistic Methods for Multi-Robot Collaboration
职业:多机器人协作的概率方法
- 批准号:
0093406 - 财政年份:2001
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
- 批准号:
2410255 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132936 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant