GOALI/Collaborative Research: Mechanics and Dynamics of Low Frequency Vibration Assisted Machining
GOALI/合作研究:低频振动辅助加工的力学和动力学
基本信息
- 批准号:2019370
- 负责人:
- 金额:$ 20.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Grant Opportunities for Academic Liaison with Industry (GOALI) project partners two universities with industry in the fundamental research on the effect of applying slow vibrations to enhance material removal in machining processes. Vibrations have been treated as a disturbance and a source of inefficiency to many manufacturing operations including machining processes. However, this new approach attempts to use low frequency (slow) vibrations to improve the contact conditions between the cutting tool and workpiece and thereby improve machining efficiency. By applying controlled slow oscillations to cutting tools, this new cutting process can enable material removal with lower cutting effort and energy, attain longer tool-life, and improve overall stability of the machining process towards higher material removal rates. It can significantly enhance manufacturing productivity, and hence US competitiveness and prosperity, and product quality especially for components made of difficult-to-cut metal alloys employed in U.S. automotive, aerospace, defense and energy sectors. Collaboration with a partner from US automotive industry will help ensure the technology transfer and enhance student training.This project investigates the mechanisms by which low frequency vibration applied in continuous cutting process can alter and improve the cutting mechanics and dynamics. Modulating the tool at low frequency along tool feed direction transforms continuous cutting into discrete cutting. This new discrete cutting kinematics not only alters the deformation mechanics of chip formation, but also changes the thermomechanical dynamics in the cutting zone as well as the dynamic stability of the machining process. This research will analyze chip formation mechanics through in-situ digital image correlation and develop analytical models to understand the relationship between vibration kinematics, including cutting force and energy, and overall material removal effort. As the low frequency modulation periodically disengages the cutting tool from the workpiece, it interrupts continuous heating of the cutting edge and induces pre-determined cool-down periods to reduce tool temperature. Analytical models and experimental characterization will capture this transient and cyclic heat conduction regime and its thermo-mechanics. It will provide optimal cutting strategies to increase the tool-life. Finally, effect of feed modulation on the coupled dynamics of process and the machining equipment will be investigated. New knowledge will be created on how to use the controlled low frequency vibration to control and suppress high-frequency self-excited chatter instabilities during machining. It will allow machining of precision parts at significantly higher depth, feed and speed leading to greater material removal rates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这种与工业联络(Goali)的学术联络机会的授予机会合作了两所工业大学,这些大学在基础研究中,对应用缓慢振动以增强加工过程中的材料去除的效果。振动已被视为包括加工过程在内的许多制造运营的干扰和效率低下的来源。但是,这种新方法试图使用低频(慢)振动来改善切割工具和工件之间的接触条件,从而提高加工效率。通过将受控的缓慢振荡应用于切割工具,这种新的切割过程可以通过降低切割和能量来清除材料,从而实现更长的工具寿命,并提高加工过程的总体稳定性,以降低较高的材料去除率。它可以显着提高制造生产率,因此,美国竞争力和繁荣以及产品质量,尤其是针对由美国汽车,航空航天,国防和能源领域的难以切割的金属合金制成的组件。与美国汽车行业的合作伙伴的合作将有助于确保技术转移并增强学生培训。该项目研究了在连续切割过程中应用低频振动可以改变和改善切割机制和动态的机制。沿着工具进料方向调节工具以低频调节工具将连续切割变成离散切割。这种新的离散切割运动学不仅改变了芯片形成的变形力学,而且还改变了切割区中的热机械动力学以及加工过程的动态稳定性。这项研究将通过原位数字图像相关性分析芯片形成力学,并开发分析模型,以了解振动运动学之间的关系,包括切割力和能量以及整体材料去除工作。随着低频调制会定期从工件中脱离切割工具,它会中断尖端的连续加热,并诱导预定的冷静时期以降低刀具温度。分析模型和实验表征将捕获这种瞬时和循环热传导状态及其热力学。它将提供最佳的切割策略来增加工具寿命。最后,将研究饲料调制对工艺耦合动力学和加工设备的影响。将创建有关如何使用受控的低频振动来控制和抑制加工过程中高频自激发不稳定性的新知识。这将允许在更高的深度,饲料和速度上加工精度零件,从而导致更高的材料去除率。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Mechanics and Dynamics of Modulated Turning
- DOI:10.1016/j.jmatprotec.2022.117708
- 发表时间:2022-07
- 期刊:
- 影响因子:6.3
- 作者:Bora Eren;Soohyun Nam;B. Sencer
- 通讯作者:Bora Eren;Soohyun Nam;B. Sencer
Analytical prediction of chatter stability for modulated turning
- DOI:10.1016/j.ijmachtools.2021.103739
- 发表时间:2021-05-13
- 期刊:
- 影响因子:14
- 作者:Nam, Soohyun;Eren, Bora;Shamoto, Eiji
- 通讯作者:Shamoto, Eiji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Burak Sencer其他文献
Development of a Chip Pulling System for Efficient Turning
- DOI:
10.1016/j.procir.2014.03.092 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Burak Sencer;Tomoya Aoki;Eiji Shamoto;Takumi Hasegawa;Tomio Koide - 通讯作者:
Tomio Koide
Novel deconvolution based feedrate scheduling towards a new class of CAM for time-dependent processes
基于新型反卷积的进给率调度,针对时间相关过程的新型 CAM
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shuntaro Yamato;Burak Sencer;Anthony Beaucamp - 通讯作者:
Anthony Beaucamp
Accurate prediction of machining cycle times by data-driven modelling of NC system's interpolation dynamics
- DOI:
10.1016/j.cirp.2022.04.017 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Masafumi Endo;Burak Sencer - 通讯作者:
Burak Sencer
Adaptive Torque Ripple Compensation Technique Based on the Variable Structure Control and its Applications to Gear Driven Motion Systems
基于变结构控制的自适应扭矩脉动补偿技术及其在齿轮传动运动系统中的应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Burak Sencer;Eiji Shamoto - 通讯作者:
Eiji Shamoto
A Sliding Made Controller Design for Position Synchronization of Dual Spindle Servo Systems
双主轴伺服系统位置同步的滑动控制器设计
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Burak Sencer;Eiji Shamoto - 通讯作者:
Eiji Shamoto
Burak Sencer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Burak Sencer', 18)}}的其他基金
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
- 批准号:
2323120 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
GOALI: Mechanics and Dynamics of Machining with Applied Chip Tension
目标:应用切屑张力的加工力学和动力学
- 批准号:
1661926 - 财政年份:2017
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
相似国自然基金
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:62203348
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
- 批准号:52202452
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
- 批准号:52105525
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant