GOALI/Collaborative Research: Improving Incremental Sheet Forming by Ultrasonically Enhanced Material Deformation

GOALI/合作研究:通过超声波增强材料变形改进增量板材成型

基本信息

  • 批准号:
    2019238
  • 负责人:
  • 金额:
    $ 29.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

This Grant Opportunity for Academic Liaison with Industry (GOALI) award supports research that contributes to the understanding of ultrasonically-enhanced incremental sheet forming with funding from the Advanced Manufacturing Program in the Civil, Mechanical, and Manufacturing Innovation Division and from the Metals and Metallic Nanostructures Program in the Division of Materials Research. Despite the rapid development of ultra-high strength materials, their readiness to use is limited by limitations in the associated manufacturing processes, especially in the field of sheet metal forming. One promising solution is to temporarily soften the material during the forming process, which can be achieved with the assistance of ultrasonic energy. However, the underlying principles of this softening phenomenon remain elusive. Another benefit of applying ultrasonic energy is improved tribological behavior. Among forming technologies, incremental sheet forming is advantageous in rapid prototyping based on its universal tooling and high flexibility, which meet the increasingly competitive market demands of product updates and customization. However, achieving high geometric accuracy and surface finish quality are challenging. In this aspect, both the ultrasonic softening and modified friction can be harnessed as a unique process and property enhancement solution. The fundamental research of ultrasonic effects on material behavior facilitates effective incorporation of ultrasonic energy into incremental sheet forming, which greatly benefits sheet metal applications in industries such as aerospace, automotive and biomedical. Students involved in the project gain multidisciplinary knowledge and research experiences in materials, mechanical engineering and manufacturing. Students, particularly women and underrepresented minorities, have the opportunity to interact with GOALI partner Boeing engineers.This project aims to advance the fundamental knowledge of ultrasonic softening mechanisms on material deformation behavior. The research is to effectively utilize ultrasonic energy to enhance the incremental sheet forming (ISF) process based on both its bulk softening and modified surface tribological behavior. First, an innovative ultrasonically assisted (UA) micro-tensile testbed, equipped with an in situ high speed optical microscope imaging system, is developed. This enables digital image correlation analysis on the transient inter and intragranular strain field within the ultrasonic vibration cycle. Post mortem multiscale microstructure characterizations are then performed. A dislocation density-based crystal plasticity constitutive material model is developed to reveal the physical principles that are beyond experimental observations. Second, the UA-ISF process is comprehensively studied, in which relationships between the reduced forming force, increased forming accuracy, improved surface finish and the ISF and ultrasonic parameters are established. Finally, a coupled acousto-mechanical process model for UA-ISF is developed, which incorporates the ultrasonically affected material constitutive model developed in the first task. With experimental validations, this model would be utilized to optimize UA-ISF in forming parts with complex free-form geometries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项与行业联络的赠款机会(Goari)奖支持了研究,这有助于了解超声增强的增量表,并通过高级制造计划的资金在民用,机械和制造创新部门以及材料研究部中的金属和金属纳米结构计划的资金以及金属和金属纳米结构计划中进行了资金。尽管超高强度材料的发展迅速,但他们准备使用的准备就绪受到相关制造过程中的局限性的限制,尤其是在钣金形成领域。一种有希望的解决方案是在成型过程中暂时软化材料,这可以在超声波能量的帮助下实现。但是,这种软化现象的基本原理仍然难以捉摸。应用超声波能量的另一个好处是改善摩擦学行为。在成型技术中,基于其通用工具和高灵活性在快速原型制作中形成增量表是有利的,这些工具符合越来越多的产品更新和自定义的市场需求。但是,达到高几何准确性和表面饰面质量是具有挑战性的。在这方面,可以将超声软化和修改的摩擦作为独特的过程和属性增强解决方案利用。超声波对材料行为影响的基本研究有助于将超声波能量的有效纳入增量板形成中,这极大地有益于航空航天,汽车和生物医学等行业中的钣金应用。参与该项目的学生获得了材料,机械工程和制造业的多学科知识和研究经验。学生,尤其是妇女和代表性不足的少数民族,有机会与目标合作伙伴波音工程师互动。该项目旨在促进对材料变形行为的超声软化机制的基本知识。 这项研究是有效利用超声波能量来增强基于其散装软化和改良的表面摩擦学行为的增量表形成(ISF)过程。首先,开发了具有原位高速光学显微镜成像系统的创新超声辅助(UA)微张紧试验台。这使得超声振动周期内的瞬态间和刻度应变场对数字图像相关分析。然后进行验尸多尺度微观结构表征。开发了基于脱位密度的晶体可塑性组成材料模型,以揭示超出实验观察的物理原理。其次,全面研究了UA-FISF过程,其中减少的形成力,提高形成精度,改善的表面饰面以及ISF和超声波参数之间的关系。最后,开发了UA-FISF的耦合声学过程模型,该模型结合了第一个任务中开发的超声影响的材料本构模型。通过实验验证,该模型将用于优化UA-FISF,以形成复杂的自由形式几何形状。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准的评估值得支持的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crystal plasticity modeling of ultrasonic softening effect considering anisotropy in the softening of slip systems
  • DOI:
    10.1016/j.ijplas.2022.103343
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Jiarui Kang;Xun Liu;S. Niezgoda
  • 通讯作者:
    Jiarui Kang;Xun Liu;S. Niezgoda
Ultrasonic Effect on the Deformation Behavior and Microstructure Evolution of a TRIP-Assisted Steel
The effects of ultrasonic vibration on Portevin–Le Chatelier (PLC) effect and stress-strain behavior in aluminum alloy 2024
超声波振动对铝合金 Portevin-Le Chatelier (PLC) 效应和应力应变行为的影响 2024
  • DOI:
    10.1016/j.scriptamat.2022.115121
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Kang, Jiarui;Liu, Xun;Wang, Tianzhao
  • 通讯作者:
    Wang, Tianzhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xun Liu其他文献

Research on Fractal Evolution Characteristics and Safe Mining Technology of Overburden Fissures under Gully Water Body
沟壑水体下覆岩裂隙分形演化特征及安全开采技术研究
  • DOI:
    10.3390/fractalfract6090486
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Kaijun Miao;Shihao Tu;Hongsheng Tu;Xun Liu;Wenlong Li;Hongbin Zhao;Long Tang;Jieyang Ma;Yan Li
  • 通讯作者:
    Yan Li
Improving accuracy ofestimating glomerular fltration rate using artifcial neural network: model development andvalidation
使用人工神经网络提高估计肾小球滤过率的准确性:模型开发和验证
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xun Liu;Ningshan L;Hui Huang;Han‑Zhu Qian;Peijia Liu;Hui Lu
  • 通讯作者:
    Hui Lu
Mutual Inductance Calculation of Movable Planar Coils on Parallel Surfaces
平行面上可动平面线圈的互感计算
Evaluation of shear piezoelectric coefficient d15 of piezoelectric ceramics by using piezoelectric cantilever beam in dynamic resonance
利用压电悬臂梁动态共振评估压电陶瓷的剪切压电系数d15
  • DOI:
    10.1080/00150193.2017.1388838
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Yuankun Zhu;Xuejun Zheng;Lei Li;Yuangen Yu;Xun Liu;Jianguo Chen
  • 通讯作者:
    Jianguo Chen
Examining RE and Emotional Distress in Population With Existing Cardiovascular Disease and/or Cardiovascular Disease Risk Factors and Those Without
检查患有现有心血管疾病和/或心血管疾病危险因素的人群和没有心血管疾病危险因素的人群的 RE 和情绪困扰
  • DOI:
    10.1177/1066480717732306
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew P. Daire;Xun Liu;Brooke Williams;Kelsee Tucker;Naomi J. Wheeler;Teddy Moumouris;Kimberly Liekweg;T. Peoples
  • 通讯作者:
    T. Peoples

Xun Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xun Liu', 18)}}的其他基金

CAREER: Ultrasonically Assisted Wire Arc Additive Manufacturing of Metal Matrix Nanocomposites for High-strength, Lightweight Structures
职业:用于高强度、轻质结构的金属基纳米复合材料的超声波辅助电弧增材制造
  • 批准号:
    2044526
  • 财政年份:
    2021
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
An Innovative Hybrid Ultrasonic Resistance Welding Process for Joining Advanced Lightweight and Dissimilar Materials
用于连接先进轻质和异种材料的创新混合超声波电阻焊接工艺
  • 批准号:
    1853632
  • 财政年份:
    2019
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Fundamentals of Acousto-Plasticity and Tribology in Ultrasonically Enhanced Incremental Sheet Forming
EAGER/协作研究:超声增强增量板材成形中的声塑性和摩擦学基础
  • 批准号:
    1841589
  • 财政年份:
    2018
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Collaborative Research: IHCS-Cybersystems: Integration of Protocol and Hardware Design for Securing Internet Communications
合作研究:IHCS-Cyber​​systems:用于保护互联网通信的协议和硬件设计的集成
  • 批准号:
    1104354
  • 财政年份:
    2011
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Collaborative Research: IHCS-Cybersystems: Integration of Protocol and Hardware Design for Securing Internet Communications
合作研究:IHCS-Cyber​​systems:用于保护互联网通信的协议和硬件设计的集成
  • 批准号:
    0901530
  • 财政年份:
    2009
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant

相似国自然基金

开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
    62203348
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
  • 批准号:
    52202452
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
    52105525
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了