CAREER: Ultrasonically Assisted Wire Arc Additive Manufacturing of Metal Matrix Nanocomposites for High-strength, Lightweight Structures

职业:用于高强度、轻质结构的金属基纳米复合材料的超声波辅助电弧增材制造

基本信息

  • 批准号:
    2044526
  • 负责人:
  • 金额:
    $ 50.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant focuses on an innovative ultrasonically assisted wire arc additive manufacturing process for fabricating metal matrix nanocomposite structures in freeform and at large scale. Metal matrix nanocomposites are a promising class of lightweight materials with superior mechanical performance attributed to well-dispersed nanoparticles within the bulk. Wire arc additive manufacturing is based on arc welding principles in which a continuously fed metal wire is melted and deposited into a desired complex shape, layer-by-layer. The process enables the direct manufacture of metal matrix nanocomposite functional parts and is advantageous in distinctly high deposition rate and low cost compared with powder-based additive manufacturing processes. This project would facilitate wide applications of metal matrix nanocomposites for lightweight structures, which improves energy efficiency, reduces fuel consumption and benefits various transportation industries, thus contributing to national economy and security. Multidisciplinary and real-world problem-based student training at different levels are well integrated into this project. Research results are transformed into multiple outreach initiatives that increase manufacturing career awareness in young generations and under-represented minorities. The virtual lab tools promote distance and continuing education. All of these contribute to development of globally competitive and diverse STEM workforce. The goal of this research is to investigate ultrasonically assisted wire arc additive manufacturing of metal matrix nanocomposites. While lightweight, high strength components are possible in these materials, achieving superior mechanical properties is challenging due to agglomeration of nanoparticles in the repeated melting cycles, solidification defects, porosity and inferior as-cast microstructure. To improve wire arc additive manufacturing, this research utilizes superimposed ultrasonic vibration to disperse the nanoparticles, refine the microstructure and minimize the defects. Specific objectives are to (1) understand the interaction of acoustic and electromagnetic fields and nanoparticle dispersions on melt pool hydrodynamics, (2) reveal coupling principles of acoustic field and nanoparticles on microstructure evolution in the repeated melting and solidification cycles, and (3) integrate data-driven and physics-based approaches for high fidelity modeling and analysis. The ultrasonically assisted wire arc additive manufacturing system is equipped with multiple sensors for online thermal-mechanical-acoustic analysis for process monitoring and control. Parts built with this hybrid process under different conditions are subject to comprehensive evaluation and multi-scale microstructure characterization. To establish relationships between process parameters, deposition profile, microstructure and mechanical properties, emerging data science tools are utilized, which are regularized by physics-based molten pool, solidification and phase transformation models. This modeling framework enables computational and data efficient tools for analyzing complex nonlinear physics involved in various manufacturing processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助重点关注创新的超声波辅助电弧增材制造工艺,用于制造自由形式的大规模金属基纳米复合材料结构。金属基纳米复合材料是一类很有前途的轻质材料,由于纳米颗粒在本体中分散良好,因此具有优异的机械性能。电弧增材制造基于电弧焊接原理,其中连续送入的金属丝被熔化并逐层沉积成所需的复杂形状。该工艺能够直接制造金属基纳米复合材料功能部件,与粉末基增材制造工艺相比,具有明显高沉积速率和低成本的优势。该项目将促进金属基纳米复合材料在轻质结构中的广泛应用,提高能源效率,降低燃料消耗,惠及各交通运输行业,从而为国民经济和安全做出贡献。多学科和基于实际问题的不同级别的学生培训很好地融入了这个项目。研究成果转化为多项推广计划,提高年轻一代和代表性不足的少数群体的制造业职业意识。虚拟实验室工具促进远程教育和继续教育。所有这些都有助于培养具有全球竞争力和多元化的 STEM 劳动力。本研究的目的是研究金属基纳米复合材料的超声波辅助电弧增材制造。虽然这些材料可以实现轻质、高强度的部件,但由于纳米颗粒在重复的熔化循环中发生团聚、凝固缺陷、孔隙率和较差的铸态微观结构,实现优异的机械性能具有挑战性。为了改进电弧增材制造,本研究利用叠加超声波振动来分散纳米颗粒、细化微观结构并最大限度地减少缺陷。具体目标是(1)了解声场和电磁场以及纳米粒子分散体对熔池流体动力学的相互作用,(2)揭示声场和纳米粒子对重复熔化和凝固循环中微观结构演化的耦合原理,以及(3)整合用于高保真建模和分析的数据驱动和基于物理的方法。超声波辅助电弧增材制造系统配备了多个传感器,用于在线热机械声学分析,以实现过程监测和控制。在不同条件下采用这种混合工艺制造的零件需要进行综合评估和多尺度微观结构表征。为了建立工艺参数、沉积轮廓、微观结构和机械性能之间的关系,利用了新兴的数据科学工具,这些工具通过基于物理的熔池、凝固和相变模型进行了规范化。该建模框架支持计算和数据高效工具,用于分析各种制造过程中涉及的复杂非线性物理。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental Analysis of Metal Inert Gas Based Wire Arc Additive Manufacturing of Aluminum Nanocomposite AA7075
金属惰性气体基电弧增材制造铝纳米复合材料AA7075的实验分析
Ultrasonic effects with different vibration positions on gas tungsten arc wire additive manufactured aluminum nanocomposite
不同振动位置超声对气体钨极电弧丝增材制造纳米铝复合材料的影响
  • DOI:
    10.1016/j.jmapro.2023.09.043
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wang, Tianzhao;Liu, Xun;Darnell, Mason
  • 通讯作者:
    Darnell, Mason
Ultrasonic effects on gas tungsten arc based wire additive manufacturing of aluminum matrix nanocomposite
  • DOI:
    10.1016/j.matdes.2022.110393
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    T. Wang;V. Mazánová;Xun Liu
  • 通讯作者:
    T. Wang;V. Mazánová;Xun Liu
Ultrasonically assisted hot-wire arc additive manufacturing process of AA7075 metal matrix nanocomposite
超声辅助热丝电弧增材制造AA7075金属基纳米复合材料
  • DOI:
    10.1016/j.jallcom.2022.168298
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wang, Tianzhao;Kang, Jiarui;Darnell, Mason;Liu, Xun
  • 通讯作者:
    Liu, Xun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xun Liu其他文献

Functionalized Nanoparticles Efficiently Enhancing the Targeted Delivery, Tumor Penetration, and Anticancer Activity of 7-Ethyl-10-Hydroxycamptothecin
功能化纳米粒子有效增强7-乙基-10-羟基喜树碱的靶向递送、肿瘤渗透和抗癌活性
  • DOI:
    10.1002/adhm.201701140
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Xun Liu;Jingxing Si;Qianzhi Zhang;Qian Huang;Danxia Gu;Hao Yang;Xu Chen;Youqing Shen;Meihua Sui
  • 通讯作者:
    Meihua Sui
Mentalizing during social InterAction: A four component model
社交互动期间的心理化:四部分模型
  • DOI:
    10.31234/osf.io/ftgs3
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Haiyan Wu;Xun Liu;Cindy C. Hagan;Dean Mobbs
  • 通讯作者:
    Dean Mobbs
In-situ measurement of the plasma density by laser Thomson scattering
通过激光汤姆逊散射原位测量等离子体密度
Research on Fractal Evolution Characteristics and Safe Mining Technology of Overburden Fissures under Gully Water Body
沟壑水体下覆岩裂隙分形演化特征及安全开采技术研究
  • DOI:
    10.3390/fractalfract6090486
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Kaijun Miao;Shihao Tu;Hongsheng Tu;Xun Liu;Wenlong Li;Hongbin Zhao;Long Tang;Jieyang Ma;Yan Li
  • 通讯作者:
    Yan Li
Improving accuracy ofestimating glomerular fltration rate using artifcial neural network: model development andvalidation
使用人工神经网络提高估计肾小球滤过率的准确性:模型开发和验证
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xun Liu;Ningshan L;Hui Huang;Han‑Zhu Qian;Peijia Liu;Hui Lu
  • 通讯作者:
    Hui Lu

Xun Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xun Liu', 18)}}的其他基金

GOALI/Collaborative Research: Improving Incremental Sheet Forming by Ultrasonically Enhanced Material Deformation
GOALI/合作研究:通过超声波增强材料变形改进增量板材成型
  • 批准号:
    2019238
  • 财政年份:
    2020
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Standard Grant
An Innovative Hybrid Ultrasonic Resistance Welding Process for Joining Advanced Lightweight and Dissimilar Materials
用于连接先进轻质和异种材料的创新混合超声波电阻焊接工艺
  • 批准号:
    1853632
  • 财政年份:
    2019
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Fundamentals of Acousto-Plasticity and Tribology in Ultrasonically Enhanced Incremental Sheet Forming
EAGER/协作研究:超声增强增量板材成形中的声塑性和摩擦学基础
  • 批准号:
    1841589
  • 财政年份:
    2018
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Standard Grant
Collaborative Research: IHCS-Cybersystems: Integration of Protocol and Hardware Design for Securing Internet Communications
合作研究:IHCS-Cyber​​systems:用于保护互联网通信的协议和硬件设计的集成
  • 批准号:
    1104354
  • 财政年份:
    2011
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Standard Grant
Collaborative Research: IHCS-Cybersystems: Integration of Protocol and Hardware Design for Securing Internet Communications
合作研究:IHCS-Cyber​​systems:用于保护互联网通信的协议和硬件设计的集成
  • 批准号:
    0901530
  • 财政年份:
    2009
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Standard Grant

相似国自然基金

基于简并结构平板的多涡旋耦合超声波束形成、特性及应用研究
  • 批准号:
    12374439
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于提高皮克林乳液稳定性的超声波调控蛋白质-多酚纳米颗粒的共组装机理
  • 批准号:
    32302278
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超声波协同滚揉腌制对牛肉肌原纤维蛋白结构和功能特性的影响及其机制研究
  • 批准号:
    32372358
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超声波辅助制备亚共晶Nb-Si基合金熔凝过程传输特性及对组织性能的影响机制研究
  • 批准号:
    52304393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声波传感的高速道岔专用螺栓服役状态在线检测及预报研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:

相似海外基金

ラットの新規超音波発声と不公平嫌悪の関係性の解明
阐明新型超声波发声与大鼠不公平厌恶之间的关系
  • 批准号:
    24K06624
  • 财政年份:
    2024
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
”からだで聞く”超音波による音声伝達特性の解明と改善に関する研究
“用身体聆听”利用超声波阐明和改善声音传输特性的研究
  • 批准号:
    24K03260
  • 财政年份:
    2024
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
マウス超音波発声の音韻・韻律変化に対する聴覚野の半球特異性の検討
检查听觉皮层的半球特异性对小鼠超声发声语音和韵律变化的反应
  • 批准号:
    24K19764
  • 财政年份:
    2024
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Phonetic characteristics of geminates in Japanese: Articulatory gestures and their timing
日语中双生词的语音特征:发音姿势及其时机
  • 批准号:
    22KJ2752
  • 财政年份:
    2023
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamics of ultrasonically levitated droplet and their applications to medicine
超声悬浮液滴动力学及其在医学中的应用
  • 批准号:
    23H01365
  • 财政年份:
    2023
  • 资助金额:
    $ 50.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了