Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits

合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障

基本信息

  • 批准号:
    1956313
  • 负责人:
  • 金额:
    $ 63.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

While the proliferation of electronics has been driven by computing and consumer applications for a long time, integrated circuits (ICs) presently undergo accelerated integration into healthcare, transportation, robotics, and autonomous systems. In addition to provision of prescribed functionalities of sensing, computing, and processing, these ICs must meet stringent reliability specifications in order to safeguard performance and safety of the whole mission-critical system where deployed. Circuits designed to be fail-safe by design exhibit low occurrences of failure. However, having a sign of no failure under typical verification and test procedures yields no guarantee for meeting a given near-zero or extremely-low failure specification. On the other hand, exhaustiveness may never be achieved by brute-force failure detection, which results in an unacceptably high cost in simulation and testing. This project will develop efficient machine-learning techniques for extremely-rare circuit-failure detection without needing large amounts of expensive simulation or test data. The proposed techniques will enable cost-effective verification and test of reliability-critical ICs and mission-critical systems in general. The research undertaken will also enable the two groups at UC Santa Barbara and UT Dallas to educate and train undergraduate and graduate students, including women and underrepresented groups, thus expanding the and contributing to the much needed US technological workforce. It is believed that extracting critical failure information via machine learning within practical limits of available measurement or simulation data can go a long way towards extremely rare failure detection. This project centers on developing an active-learning framework that intelligently samples in the high-dimensional space of complex interacting design parameters, manufacturing variations, and operating conditions, achieving the goal of data-efficient detection of rare circuit failures. The targeted active-learning framework will be supported by the development of machine-learning model foundations and robust learning methods that can scale to high-dimensional parameter spaces. The key objective of this project is to make extremely-rare failure discovery and identification of the underlying failure mechanisms practically viable by extracting the maximum amount of useful information possible from a small amount of available data. The proposed extremely-rare failure discovery work will be broadly applicable to verification and failure analysis of analog, mixed-signal, radio-frequency, and memory circuits with stringent failure specifications and many other types of mission-critical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然长期以来计算和消费应用推动了电子产品的普及,但集成电路 (IC) 目前正在加速集成到医疗保健、交通、机器人和自主系统中。除了提供规定的传感、计算和处理功能外,这些 IC 还必须满足严格的可靠性规范,以保障部署的整个关键任务系统的性能和安全性。设计为故障安全的电路表现出较低的故障发生率。然而,在典型的验证和测试程序下没有出现故障的迹象并不能保证满足给定的接近零或极低的故障规格。另一方面,穷举式的故障检测可能永远无法实现,这会导致模拟和测试的成本高得令人无法接受。该项目将开发高效的机器学习技术,用于极其罕见的电路故障检测,而不需要大量昂贵的模拟或测试数据。所提出的技术将能够对可靠性关键型 IC 和一般任务关键型系统进行经济有效的验证和测试。 所进行的研究还将使加州大学圣巴巴拉分校和德克萨斯大学达拉斯分校的两个小组能够教育和培训本科生和研究生,包括女性和代表性不足的群体,从而扩大并为急需的美国技术劳动力做出贡献。人们相信,在可用测量或模拟数据的实际限制内通过机器学习提取关键故障信息可以对极其罕见的故障检测大有帮助。该项目的重点是开发一个主动学习框架,该框架可以在复杂的交互设计参数、制造变化和操作条件的高维空间中进行智能采样,从而实现对罕见电路故障进行数据有效检测的目标。有针对性的主动学习框架将得到机器学习模型基础和可扩展到高维参数空间的稳健学习方法的开发的支持。该项目的主要目标是通过从少量可用数据中提取尽可能多的有用信息,使极其罕见的故障发现和潜在故障机制的识别变得切实可行。拟议的极其罕见的故障发现工作将广泛适用于具有严格故障规范的模拟、混合信号、射频和存储器电路以及许多其他类型的关键任务系统的验证和故障分析。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Gating Architecture for Rare Failure Detection of Analog and Mixed-Signal Circuits
用于模拟和混合信号电路罕见故障检测的可逆门控架构
Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning
使用特定领域数据增强和对比学习的半监督晶圆图模式识别
Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Li其他文献

Fuzzy Association Rule Mining Algorithm Based on Load Classifier
基于负载分类器的模糊关联规则挖掘算法
  • DOI:
    10.1007/978-981-15-2810-1_18
  • 发表时间:
    2019-05-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Chen;Hui Zheng;Peng Li;Zhenjiang Zhang;Huawei Li;Wei Liu
  • 通讯作者:
    Wei Liu
Comparison between autologous blood transfusion drainage and no drainage/closed-suction drainage in primary total hip arthroplasty: a meta-analysis
初次全髋关节置换术中自体输血引流与不引流/闭式吸引引流比较的Meta分析
Characterization of intermolecular and intramolecular interactions with the atomic force microscope
用原子力显微镜表征分子间和分子内相互作用
  • DOI:
    10.1201/b17566-49
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Gil U. Lee;K. Ivanov;D. Kilinc;E. Martines;Agata Blasiak;Peng Li;M. Higgins
  • 通讯作者:
    M. Higgins
Secure Balance Planning of Off-blockchain Payment Channel Networks
链下支付通道网络的安全余额规划
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng Li; Toshiaki Miyazaki;Wanlei Zhou
  • 通讯作者:
    Wanlei Zhou
Downregulated SASH1 expression indicates poor clinical prognosis in gastric cancer.
SASH1表达下调表明胃癌临床预后不良。
  • DOI:
    10.1016/j.humpath.2018.01.008
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Nan Zhou;Can Liu;Xudong Wang;Q. Mao;Q. Jin;Peng Li
  • 通讯作者:
    Peng Li

Peng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Li', 18)}}的其他基金

SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
  • 批准号:
    EP/X031608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
  • 批准号:
    2144216
  • 财政年份:
    2022
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    2000851
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1911067
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1948201
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
  • 批准号:
    1940761
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    1810125
  • 财政年份:
    2018
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
  • 批准号:
    1740531
  • 财政年份:
    2017
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
  • 批准号:
    62265011
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了