Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
基本信息
- 批准号:10739049
- 负责人:
- 金额:$ 243.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskArchivesArtificial IntelligenceAsian populationAtrophicBiologyBlack PopulationsBlack raceBrainBrain imagingBrain scanClinicClinicalClinical DataClinical ResearchCodeCompanionsComputational algorithmComputer softwareDataData SetDedicationsDementiaDemocracyDetectionDeveloping CountriesDiseaseDisparityDocumentationEnrollmentGeneral HospitalsHispanicHispanic PopulationsHospitalsHumanImageJointsLesionLicensingMRI ScansMachine LearningMagnetic Resonance ImagingMassachusettsMeasurementMedically Underserved AreaMetadataMethodsMinorityModelingModernizationNerve DegenerationNigeriaNoiseOutcomePathologyPhysiciansPhysiologic pulsePlayPoliciesPopulationPopulation HeterogeneityPositioning AttributeProcessRandomizedReduce health disparitiesResearchResearch PersonnelResolutionRetrospective StudiesRoleSafetySample SizeSamplingScanningSignal TransductionSiteSliceSocioeconomic FactorsSourceSystemThickTrainingUncertaintyUnderrepresented PopulationsVisualWorkbiobankbrain magnetic resonance imagingcohortcostdata sharingdeep learningdisorder subtypediverse dataethnic diversityethnoracialhealth care availabilityhealthy agingheterogenous datahigh resolution imagingimprovedin vivolongitudinal analysislow and middle-income countriesmachine learning algorithmmachine learning methodmedically underservedmedically underserved populationmeetingsmorphometrymultimodal dataneural networkneuroimagingnormal agingopen sourceportabilitypreventprospectivequantitative imagingresearch studyrural areatoolultra high resolutionunderserved areausabilitywhite matter
项目摘要
Project Summary
Title:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations
with clinical and low-field brain MRI
Summary:
Magnetic resonance imaging (MRI) has revolutionized research of the human brain, by providing a window to
the living brain in healthy aging and disease. A key aspect of this revolution has been the ability to obtain
precise morphometric measurements from brain MRI using software packages like FreeSurfer (developed by
our lab), FSL, AFNI, or SPM. These packages rely on computer algorithms that work best with isotropic data,
1 mm MP-RAGE scans. Unfortunately, clinical scans are generally highly anisotropic (e.g., 6 mm spacing
between slices), precluding automatic morphometric analysis with the aforementioned packages. Images
acquired with portable and non-portable low-field scanners also suffer from the same limitation.
The inability to process clinical MRI prevents the extraction of precise morphometric measurements from
MRI studies in the clinic (quantitative imaging), as well as from low-field scans that may be the only imaging
alternative in medically underserved regions, e.g., rural areas or developing countries. Crucially, this inability
also precludes the analysis of millions of scans that are sitting in the PACS of hospitals around the world,
including large amounts of images and associated clinical metadata from populations that are typically
underrepresented in neuroimaging studies (e.g., Black, Hispanic), thus hindering progress in aging research.
In this project, we propose to develop AI methods that can turn clinical or low-field MRI into isotropic scans
of reference contrast (a 1 mm MP-RAGE). Importantly, the methods will: (i) be adaptive to the number of input
MR sequences, as well as their orientation, contrast and resolution; (ii) be robust against aging-related
pathology (atrophy, white matter lesions); and (iii) not require retraining. These features will enable application
any MR dataset without specialized hardware or machine learning expertise. The resulting synthetic scans can
be used for a wide array of existing morphometrics analyses, e.g., segmentation, volumetry, registration,
longitudinal analysis, cortical thickness and parcellation, and many more. Another key feature of the framework
is the fact that it yields harmonized images, which reduces bias across sites and pulse sequences.
We will validate the tools with: (i) synthetically downsampled scans from a number of public datasets
covering a diverse population; and (ii) a dedicated, diverse, comprehensive dataset of multi-modal MRI,
comprising paired research, clinical and low-field scans, acquired specifically for this project. We will carefully
assess the biases in our developed tools and try to mitigate them. We will apply the final version of the tools to
a large-scale study of a clinical aging cohort from Massachusetts General Hospital, as well as to two clinical
studies with portable MRI. Both the tools and the new dataset will be made publicly through FreeSurfer (60,000
worldwide licenses), thus enabling researchers worldwide to analyze large clinical datasets with sample sizes
much higher than those achieved in current research studies. Therefore, our tools promise to increase our
understanding of the human brain in normal aging and in disease, particularly in underrepresented populations.
项目摘要
标题:
无独立的机器学习用于代表性不足的老龄化人群的形态分析
与临床和低场大脑MRI
概括:
磁共振成像(MRI)通过提供一个窗口来彻底改变对人脑的研究
健康衰老和疾病中的活体大脑。这场革命的一个关键方面是获得
使用FreeSurfer等软件包从脑MRI进行精确的形态测量(由FreeSurfer开发)
我们的实验室,FSL,AFNI或SPM。这些软件包依赖于与各向同性数据最有效的计算机算法,
1毫米MP-RAGE扫描。不幸的是,临床扫描通常是高度各向异性的(例如6 mm间距
在切片之间),排除上述软件包的自动形态分析。图像
以便携式和不可便携式的低场扫描仪获得的也有相同的限制。
无法处理临床MRI可以防止从精确的形态测量中提取
诊所中的MRI研究(定量成像)以及可能是唯一成像的低场扫描
在医学上服务不足的地区,例如农村地区或发展中国家。至关重要的是,这种无能
还排除了对全球医院Pac中的数百万扫描的分析,
包括大量的图像和相关的临床元数据,通常是
神经影像学研究的代表性不足(例如黑色,西班牙裔),从而阻碍了衰老研究的进展。
在这个项目中,我们建议开发可以将临床或低场MRI变成各向同性扫描的AI方法
参考对比度(1 mm MP-RAGE)。重要的是,方法将:(i)适应输入数量
MR序列及其方向,对比度和分辨率; (ii)与衰老有关
病理(萎缩,白质病变); (iii)不需要再培训。这些功能将启用应用程序
任何没有专门硬件或机器学习专业知识的MR数据集。由此产生的合成扫描可以
用于广泛的现有形态计分析,例如分割,体积,注册,
纵向分析,皮质厚度和划线等等。框架的另一个关键功能
它是它产生统一图像的事实,从而减少了跨站点和脉冲序列的偏差。
我们将使用以下方式验证工具:(i)从许多公共数据集中综合采样扫描
涵盖多样化的人口; (ii)多模式MRI的专用,多样化,全面的数据集,
由配对的研究,临床和低场扫描组成,专门为该项目获得。我们会谨慎
评估我们开发的工具中的偏见,并试图减轻它们。我们将将工具的最终版本应用于
一项大规模研究对马萨诸塞州综合医院的临床老化队列以及两个临床
使用便携式MRI研究。工具和新数据集都将通过FreeSurfer公开制造(60,000
全球许可证),从而使全球研究人员能够分析具有样本量的大型临床数据集
比当前的研究中所取得的成就要高得多。因此,我们的工具承诺会增加我们的
了解正常衰老和疾病中人脑的理解,特别是在代表性不足的人群中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Eugenio Iglesias Gonzalez其他文献
Juan Eugenio Iglesias Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Eugenio Iglesias Gonzalez', 18)}}的其他基金
Diagnosing the undiagnosable: studies of Alzheimer disease mimics and confounders via "neuropathometry" of dissection photos with 3D scanning
诊断无法诊断的疾病:通过 3D 扫描解剖照片的“神经病理学”研究阿尔茨海默病的模拟和混杂因素
- 批准号:
10323676 - 财政年份:2021
- 资助金额:
$ 243.5万 - 项目类别:
Diagnosing the undiagnosable: studies of Alzheimer disease mimics and confounders via "neuropathometry" of dissection photos with 3D scanning
诊断无法诊断的疾病:通过 3D 扫描解剖照片的“神经病理学”研究阿尔茨海默病的模拟和混杂因素
- 批准号:
10533801 - 财政年份:2021
- 资助金额:
$ 243.5万 - 项目类别:
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 243.5万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 243.5万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 243.5万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 243.5万 - 项目类别: