The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
基本信息
- 批准号:1812481
- 负责人:
- 金额:$ 38.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anyone who has poured cream into hot coffee has observed the complex patterns that occur during the mixing of two fluids. It is perhaps surprising that the underlying process is not fully understood, especially when the fluid motion is laminar, i.e., either it is slow or the viscosity is high; then uniform, efficient mixing is hard to achieve. Such laminar processes are important to many applications including the development of micrometer scale bioreactors, effective mixing of polymer and granular materials, spreading of pollutants in the atmosphere, and even nutrient dispersal and spawning efficacy for life in the sea. Laminar flows can cause chaotic motion of advected particles, yielding rapid loss of accuracy for prediction of individual trajectories that turn out to be extremely sensitive to the miniscule changes in environment. The investigator and his colleagues study the design of efficient mixers by developing an understanding of the causes of this sensitivity, and by developing methods to globally optimize stirring protocols. The mathematics of these models is closely related to that, ubiquitous for conservative motion in physics. Techniques the investigator develops are used to predict the lifetime of particles in accelerators, obtain rates for elemental chemical reactions, calculate confinement times in plasma devices, understand the spectra of highly excited atomic systems, and predict asteroid and spacecraft trajectories. Graduate students will be trained through participation in this research project.Subsonic fluids are incompressible and the resulting flows are volume-preserving. Though chaotic motion in incompressible fluids is similar to that in Hamiltonian or symplectic systems, there are profound geometrical differences due to the lack of a canonical pairing between momenta and coordinates. The investigator studies how the geometry of such dynamics changes when it is "nearly" symplectic, leading to novel elliptic structures and to a discovery of the violation of the exponential quasi-stability of nearly-integrable systems implied by Nekhoroshev's theory. The studies include the development of techniques for understanding transport through destroyed invariant tori and the long-time correlations engendered by regular islands and accelerator modes. Mixing due to chaotic advection is caused by stretching and folding, which promotes homoclinic tangles and structure so fine that diffusivity can be effective even when small. The investigator and his students will model this by a finite sequence of stirring events that determine a mixing protocol. Optimization techniques under geometric and energy constraints are used to extremize Sobolev norms that give measures of mixing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将奶油倒入热咖啡中的任何人都观察到在混合两种液体过程中发生的复杂图案。不足为奇的是,基础过程尚未完全理解,尤其是当流体运动是层流时,即速度很慢或粘度高;那么很难实现均匀,有效的混合。这样的层流过程对于许多应用至关重要,包括生物反应器的开发,聚合物和颗粒状材料的有效混合,大气中污染物的传播,甚至营养的分散和产卵对海中生命的效力。层流流可以引起前流颗粒的混乱运动,从而迅速丧失了对单个轨迹的预测,这些轨迹对环境的微小变化非常敏感。研究者及其同事通过对这种敏感性的原因进行理解以及开发全球优化搅拌协议的方法来研究有效混合器的设计。这些模型的数学与该模型的数学密切相关,无处不在,对于物理学的保守运动。 研究者开发的技术用于预测加速器中颗粒的寿命,获得元素化学反应的速率,计算血浆设备中的限制时间,了解高度激发的原子系统的光谱,并预测小行星和飞船轨迹。研究生将通过参与该研究项目进行培训。Subsonic流体是不可压缩的,并且由此产生的流量很容易。尽管不可压缩流体中的混乱运动与哈密顿量或符号系统的混乱相似,但由于Momenta和坐标之间缺乏规范配对,因此存在很大的几何差异。研究者研究了这种动力学的几何形状在“几乎”符号符合性时如何变化,从而导致新型的椭圆结构,并发现Nekhoroshev理论所暗示的几乎可综合系统的指数准稳定性的发现。研究包括开发通过破坏的托里(Tori)理解运输的技术,以及常规岛屿和加速器模式产生的长期相关性。由于伸展和折叠而引起的混合对流引起的混合,这促进了同型缠结和结构,因此即使在较小的情况下,扩散率也可以有效。研究人员和他的学生将通过确定混合协议的搅拌事件的有限序列对此进行建模。在几何和能量限制下的优化技术用于极大化sobolev规范,以衡量混合的措施。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The three-dimensional generalized Hénon map: Bifurcations and attractors
三维广义 Hénon 映射:分叉和吸引子
- DOI:10.1063/5.0103436
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hampton, Amanda E.;Meiss, James D.
- 通讯作者:Meiss, James D.
Distinguishing between regular and chaotic orbits of flows by the weighted Birkhoff average
通过加权伯克霍夫平均值区分流动的规则轨道和混沌轨道
- DOI:10.1016/j.physd.2023.133749
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Duignan, Nathan;Meiss, James D.
- 通讯作者:Meiss, James D.
Moser’s Quadratic, Symplectic Map
Moser 二次辛映射
- DOI:10.1134/s1560354718060023
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Bäcker, Arnd;Meiss, James D.
- 通讯作者:Meiss, James D.
Poisson structure of the three-dimensional Euler equations in Fourier space
傅立叶空间中三维欧拉方程的泊松结构
- DOI:10.1088/1751-8121/ab3363
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dullin, Holger R;Meiss, James D;Worthington, Joachim
- 通讯作者:Worthington, Joachim
Accelerator modes and anomalous diffusion in 3D volume-preserving maps
3D 体积保持地图中的加速器模式和反常扩散
- DOI:10.1088/1361-6544/aae69f
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Meiss, James D;Miguel, Narcís;Simó, Carles;Vieiro, Arturo
- 通讯作者:Vieiro, Arturo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Meiss其他文献
James Meiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Meiss', 18)}}的其他基金
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
- 批准号:
1211350 - 财政年份:2012
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Chaos and Bifurcations in Volume-Preserving Dynamics
体积保持动力学中的混沌和分岔
- 批准号:
0707659 - 财政年份:2007
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Geometry and Computation of Dynamics for Conservative Systems
保守系统的几何和动力学计算
- 批准号:
0202032 - 财政年份:2002
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
- 批准号:
9810751 - 财政年份:1999
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems
多维动力系统中混沌的破坏和秩序的检测
- 批准号:
9971760 - 财政年份:1999
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
- 批准号:
9623216 - 财政年份:1996
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
- 批准号:
9408697 - 财政年份:1994
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
- 批准号:
9256335 - 财政年份:1993
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
- 批准号:
9305847 - 财政年份:1993
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
- 批准号:
9001103 - 财政年份:1990
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
相似国自然基金
苹果砧木miRLn47砧穗间运输调控耐盐性机制研究
- 批准号:32302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
- 批准号:32370325
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
囊泡运输相关蛋白FAM91A1与TBC1D23突变引起脑桥小脑发育不全症的机制
- 批准号:32300578
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
芯吸冷却表面跨尺度宏微观结构的运输增强机制及制备方法研究
- 批准号:52375442
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数据驱动的集装箱甩挂运输问题研究
- 批准号:72372087
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
- 批准号:
EP/Z000726/1 - 财政年份:2025
- 资助金额:
$ 38.33万 - 项目类别:
Fellowship
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Collaborative R&D
Antarctica's leaky defence to poleward heat transport
南极洲对极地热传输的防御漏洞
- 批准号:
DP240102358 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Discovery Projects
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
- 批准号:
EP/Z000254/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Research Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant