The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
基本信息
- 批准号:1812481
- 负责人:
- 金额:$ 38.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anyone who has poured cream into hot coffee has observed the complex patterns that occur during the mixing of two fluids. It is perhaps surprising that the underlying process is not fully understood, especially when the fluid motion is laminar, i.e., either it is slow or the viscosity is high; then uniform, efficient mixing is hard to achieve. Such laminar processes are important to many applications including the development of micrometer scale bioreactors, effective mixing of polymer and granular materials, spreading of pollutants in the atmosphere, and even nutrient dispersal and spawning efficacy for life in the sea. Laminar flows can cause chaotic motion of advected particles, yielding rapid loss of accuracy for prediction of individual trajectories that turn out to be extremely sensitive to the miniscule changes in environment. The investigator and his colleagues study the design of efficient mixers by developing an understanding of the causes of this sensitivity, and by developing methods to globally optimize stirring protocols. The mathematics of these models is closely related to that, ubiquitous for conservative motion in physics. Techniques the investigator develops are used to predict the lifetime of particles in accelerators, obtain rates for elemental chemical reactions, calculate confinement times in plasma devices, understand the spectra of highly excited atomic systems, and predict asteroid and spacecraft trajectories. Graduate students will be trained through participation in this research project.Subsonic fluids are incompressible and the resulting flows are volume-preserving. Though chaotic motion in incompressible fluids is similar to that in Hamiltonian or symplectic systems, there are profound geometrical differences due to the lack of a canonical pairing between momenta and coordinates. The investigator studies how the geometry of such dynamics changes when it is "nearly" symplectic, leading to novel elliptic structures and to a discovery of the violation of the exponential quasi-stability of nearly-integrable systems implied by Nekhoroshev's theory. The studies include the development of techniques for understanding transport through destroyed invariant tori and the long-time correlations engendered by regular islands and accelerator modes. Mixing due to chaotic advection is caused by stretching and folding, which promotes homoclinic tangles and structure so fine that diffusivity can be effective even when small. The investigator and his students will model this by a finite sequence of stirring events that determine a mixing protocol. Optimization techniques under geometric and energy constraints are used to extremize Sobolev norms that give measures of mixing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
任何将奶油倒入热咖啡中的人都观察到两种液体混合过程中发生的复杂模式。也许令人惊讶的是,潜在的过程尚未完全被理解,特别是当流体运动是层流时,即要么缓慢,要么粘度高;那么均匀、高效的混合就很难实现。这种层流过程对于许多应用都很重要,包括微米级生物反应器的开发、聚合物和颗粒材料的有效混合、污染物在大气中的扩散,甚至海洋生物的营养物扩散和产卵功效。层流会导致平流粒子的混沌运动,从而导致对环境微小变化极其敏感的单个轨迹预测的准确性迅速下降。研究人员和他的同事通过了解这种敏感性的原因并开发全局优化搅拌方案的方法来研究高效混合器的设计。这些模型的数学原理与物理学中普遍存在的保守运动密切相关。 研究人员开发的技术用于预测加速器中粒子的寿命,获得元素化学反应的速率,计算等离子体装置中的限制时间,了解高度激发的原子系统的光谱,以及预测小行星和航天器的轨迹。研究生将通过参与该研究项目接受培训。亚音速流体是不可压缩的,并且产生的流动是体积保持的。尽管不可压缩流体中的混沌运动与哈密顿系统或辛系统中的混沌运动相似,但由于动量和坐标之间缺乏规范配对,因此存在深刻的几何差异。研究人员研究了这种动力学的几何形状在“接近”辛时如何变化,从而产生新颖的椭圆结构,并发现违反了涅霍罗舍夫理论所暗示的近可积系统的指数准稳定性。这些研究包括开发通过被破坏的不变环面理解输运的技术以及由常规岛屿和加速器模式产生的长期相关性。混沌平流引起的混合是由拉伸和折叠引起的,这促进了同宿缠结和结构的精细化,使得扩散率即使在很小的时候也能有效。研究人员和他的学生将通过确定混合方案的有限搅拌事件序列对此进行建模。几何和能量约束下的优化技术用于极端化提供混合测量的 Sobolev 规范。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The three-dimensional generalized Hénon map: Bifurcations and attractors
三维广义 Hénon 映射:分叉和吸引子
- DOI:10.1063/5.0103436
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hampton, Amanda E.;Meiss, James D.
- 通讯作者:Meiss, James D.
Distinguishing between regular and chaotic orbits of flows by the weighted Birkhoff average
通过加权伯克霍夫平均值区分流动的规则轨道和混沌轨道
- DOI:10.1016/j.physd.2023.133749
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Duignan, Nathan;Meiss, James D.
- 通讯作者:Meiss, James D.
Moser’s Quadratic, Symplectic Map
Moser 二次辛映射
- DOI:10.1134/s1560354718060023
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Bäcker, Arnd;Meiss, James D.
- 通讯作者:Meiss, James D.
Poisson structure of the three-dimensional Euler equations in Fourier space
傅立叶空间中三维欧拉方程的泊松结构
- DOI:10.1088/1751-8121/ab3363
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dullin, Holger R;Meiss, James D;Worthington, Joachim
- 通讯作者:Worthington, Joachim
Using curvature to select the time lag for delay reconstruction
- DOI:10.1063/5.0005890
- 发表时间:2020-06-01
- 期刊:
- 影响因子:2.9
- 作者:Deshmukh, Varad;Bradley, Elizabeth;Meiss, James D.
- 通讯作者:Meiss, James D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Meiss其他文献
James Meiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Meiss', 18)}}的其他基金
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
- 批准号:
1211350 - 财政年份:2012
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Chaos and Bifurcations in Volume-Preserving Dynamics
体积保持动力学中的混沌和分岔
- 批准号:
0707659 - 财政年份:2007
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Geometry and Computation of Dynamics for Conservative Systems
保守系统的几何和动力学计算
- 批准号:
0202032 - 财政年份:2002
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
- 批准号:
9810751 - 财政年份:1999
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems
多维动力系统中混沌的破坏和秩序的检测
- 批准号:
9971760 - 财政年份:1999
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
- 批准号:
9623216 - 财政年份:1996
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
- 批准号:
9408697 - 财政年份:1994
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
- 批准号:
9256335 - 财政年份:1993
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
- 批准号:
9305847 - 财政年份:1993
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
- 批准号:
9001103 - 财政年份:1990
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
相似国自然基金
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
- 批准号:32370325
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
固醇转运蛋白BbScp2介导球孢白僵菌细胞膜脂质运输的分子机制
- 批准号:32302451
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
边界约束下跨境铁路运输连通性格局与影响机制研究
- 批准号:42371177
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
植物特有蛋白FENT响应脱落酸信号调控囊泡运输的分子机制研究
- 批准号:32370329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
信号分子Sonic hedgehog后高尔基体运输的分子机制
- 批准号:32300589
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
- 批准号:
EP/Z000726/1 - 财政年份:2025
- 资助金额:
$ 38.33万 - 项目类别:
Fellowship
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Collaborative R&D
Antarctica's leaky defence to poleward heat transport
南极洲对极地热传输的防御漏洞
- 批准号:
DP240102358 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Discovery Projects
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
- 批准号:
EP/Z000254/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Research Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant