Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
基本信息
- 批准号:9305847
- 负责人:
- 金额:$ 6.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-15 至 1996-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9305847 Meiss The dynamics of four and higher dimensional symplectic mappings is of fundamental importance to understanding stability and chaos in conservative physical systems. In this proposal a combination of numerical and analytical techniques will be used. We propose to determine the domain of existence of invariant tori both by using recursive generation of the Fourier series for the tori, and by continuation of the Cantor sets from the anti-integrable limit. The goal is to develop methods for estimating practical stability boundaries and for investigating the transition to chaotic behavior. Computations will determine the robustness of the tori of various frequency vectors, leading to a generalization of the noble numbers that provide the most robust frequencies in two dimensions. A study of one dimensional, resonant tori will also be undertaken-these may be more persistent than two-tori, and form an important component of the barriers to transport. Transport in four dimensions. will be studied by numerical computation of exit time decompositions for cylinders of various homotopy types. Our goal is the development of a geometrical description of trapping regions and resonance zones and a characterization of the practical stability domain around an elliptic point. New techniques for control of transport will be developed for symplectic systems. All of the fundamental equations of physics are formulated as Hamiltonian dynamical systems. We propose to study the structure of the orbits of these systems with the motivation being to understand the problem of "transport. " This is of primary importance in such areas as particle accelerator confinement, chemical reaction rates, fluid mixing, plasma confinement in magnetic fusion devices, asteroid and planetary ring stability, etc. The basic question is: how does a system evolve from one state (e.g. a confined beam in an accelerator), to another (e.g. beam hits the tunnel wall), and how long does this take. Typically trajectories must wend their way through exotic structures such as Cantor sets and self-similar fractals, some of which exhibit a remarkable "stickiness", in order to move through the phase space. The construction and visualization of these structures requires careful computer study guided by mathematical insight. A major problem is that the systems of interest correspond to four and higher dimensional spaces--our ordinary three-dimensional intuition fails. In various applications transport is either to be encouraged (speeding up reaction rates) or discouraged (confining particles); we will investigate techniques for accomplishing both tasks. ***
9305847 MEISS四个和更高维符号映射的动力学对于理解保守物理系统中的稳定性和混乱至关重要。 在此提案中,将使用数值和分析技术的组合。 我们建议通过使用用于Tori的傅立叶级数的递归生成以及从反整合限制的cantor组来确定不变的托里的存在域。 目的是开发估计实际稳定边界并调查过渡到混乱行为的方法。 计算将确定各种频率向量的Tori的鲁棒性,从而导致贵族数字的概括,这些数字在二维中提供了最强大的频率。 对一维,共振的托里的研究也将进行 - 这些可能比两翼更持久,并且构成了运输障碍的重要组成部分。 运输四个维度。通过计算出口时间分解的数值计算各种同型类型的圆柱体的数值计算。 我们的目标是开发捕获区域和共振区域的几何描述,以及绕椭圆点周围实际稳定域的表征。 将为符号系统开发用于控制运输的新技术。 物理学的所有基本方程式均均为哈密顿动力系统。 We propose to study the structure of the orbits of these systems with the motivation being to understand the problem of "transport. " This is of primary importance in such areas as particle accelerator confinement, chemical reaction rates, fluid mixing, plasma confinement in magnetic fusion devices, asteroid and planetary ring stability, etc. The basic question is: how does a system evolve from one state (e.g. a confined beam in an accelerator), to another (e.g.梁撞到隧道墙),这需要多长时间。 通常,轨迹必须穿越诸如cantor套件和自相似分形等异国情调结构,其中一些表现出了非凡的“粘性”,以便在相位空间中移动。 这些结构的构建和可视化需要以数学见解为指导的仔细计算机研究。 一个主要的问题是,感兴趣的系统对应于四个和更高的空间 - 我们普通的三维直觉失败了。 在各种应用中,要么鼓励运输(加快反应速率)或灰心(限制颗粒);我们将研究完成这两个任务的技术。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Meiss其他文献
James Meiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Meiss', 18)}}的其他基金
The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
- 批准号:
1812481 - 财政年份:2018
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
- 批准号:
1211350 - 财政年份:2012
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Chaos and Bifurcations in Volume-Preserving Dynamics
体积保持动力学中的混沌和分岔
- 批准号:
0707659 - 财政年份:2007
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Geometry and Computation of Dynamics for Conservative Systems
保守系统的几何和动力学计算
- 批准号:
0202032 - 财政年份:2002
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
- 批准号:
9810751 - 财政年份:1999
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems
多维动力系统中混沌的破坏和秩序的检测
- 批准号:
9971760 - 财政年份:1999
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
- 批准号:
9623216 - 财政年份:1996
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
- 批准号:
9408697 - 财政年份:1994
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
- 批准号:
9256335 - 财政年份:1993
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
- 批准号:
9001103 - 财政年份:1990
- 资助金额:
$ 6.8万 - 项目类别:
Continuing Grant
相似国自然基金
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
- 批准号:62377005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 6.8万 - 项目类别:
Research Grant
特定行為研修「在宅・慢性期領域」における実装科学を活用した地域の取組の推進と評価
在特定行为培训“家庭/慢性阶段区域”中利用实施科学来促进和评估当地举措
- 批准号:
24K14143 - 财政年份:2024
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新規向精神薬の毒性形成機構の神経科学的解明
神经科学阐明新型精神药物毒性形成机制
- 批准号:
24K13542 - 财政年份:2024
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
機能性表示食品制度において届出される機能性の科学的根拠の質向上プログラムの開発
制定一项计划,以提高功能食品声明系统下报告的功能科学依据的质量
- 批准号:
24K14658 - 财政年份:2024
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
時空間メタマテリアル複合材料のインバース・デザインに関する計算科学的研究
时空超材料复合材料逆向设计的计算科学研究
- 批准号:
24K14976 - 财政年份:2024
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)