Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)

会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)

基本信息

  • 批准号:
    2401019
  • 负责人:
  • 金额:
    $ 1.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The funds from this award will support local expenses for additional participants from US institutions to the Banff International Research Station-Casa Matemática Oaxaca workshop 24w5198, “Optimal Transport and Dynamics” which will be held August 11 to August 16, 2024, in Oaxaca, Mexico. This workshop will focus on applications of the optimal transport problem, a mathematical problem where the goal is to minimize the total cost of transporting mass from one location to another, to problems involving physical processes that change with time. Such processes include interface motion (such as how water spreads on a surface), models for tumor growth, modeling fluid flows, multi-species population dynamics, and reconstruction of the state of the early universe. The workshop will provide a unique opportunity for early-career researchers to develop connections with and be exposed to the cutting-edge research of well-established leaders in the field. Additionally, the workshop will establish connections between mathematicians and cosmologists, to further accelerate development of the tools and theory behind computation in early universe reconstruction. More information on the workshop may be found at https://www.birs.ca/events/2024/5-day-workshops/24w5198. The workshop will bring together experts working in optimal transport (Monge-Kantorovich) theory with connections to dynamics interpreted in a broad sense. This includes using optimal transport and related tools to analyze and model fluid flows, interface motion in evolutionary PDE, and also the use of dynamical techniques such as the theory of the parabolic Monge-Ampère PDE for computational and theoretical analysis of optimal transport itself. Optimal transport theory has also been used as a computational model for early universe reconstruction that is consistent with the Zel’dovich approximation, by cosmologists with great success. With recent developments in cosmological surveying and the availability of new data, this area is currently experiencing a revival and is a particularly timely topic. The workshop will consist of a combination of short and long talks solicited from participants, with priority given to presentations by early-career researchers (i.e., graduate students, postdoctoral researchers, and pre-tenure faculty). To take advantage of the international diversity present in the participant list, there will also be a panel discussion on differences in academic job search procedures in different countries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的资金将支持美国机构的其他参与者到班夫国际研究站的当地支出,即24W5198,即“最佳运输与动态”,该工程将于2024年8月11日至8月16日在墨西哥的欧哈卡州举行。该研讨会将重点放在最佳运输问题的应用上,这是一个数学问题,目的是最大程度地减少将质量从一个位置转移到另一个位置的总成本,以涉及涉及随时间变化的物理过程的问题。这样的过程包括界面运动(例如水如何在表面上扩散),肿瘤生长模型,建模流体流动,多物种种群动态以及早期宇宙状态的重建。该研讨会将为早期研究人员提供独特的机会,以与该领域良好领导者的尖端研究建立联系并接触。此外,研讨会将建立数学家与宇宙学家之间的联系,以进一步加速早期宇宙重建中计算背后的工具和理论的发展。有关研讨会的更多信息,请访问https://www.birs.ca/events/2024/5-day-workshops/24w5198。该研讨会将汇集专家从事最佳运输(Monge-Kantorovich)理论,并与与动力学有联系的联系。这包括使用最佳传输和相关工具来分析和建模流体流,进化PDE中的界面运动以及动态技术的使用,例如抛物线蒙加蒙格 - ampèrePDE理论用于最佳运输本身的计算和理论分析。最佳运输理论也已被用作早期宇宙重建的计算模型,与Zel’Dovich近似是一致的,宇宙学家取得了巨大的成功。随着宇宙学测量的最新发展和新数据的可用性,该领域目前正在复兴,这是一个特别及时的主题。该研讨会将包括参与者巩固的简短和长期对话的组合,以及早期研究人员(即研究生,博士后研究人员和陈旧的教师)的演讲优先。为了利用参与者列表中存在的国际多样性,还将在不同国家 /地区进行有关学术求职程序差异的小组讨论。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响来评估标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Jun Kitagawa其他文献

Longitudinal Study on the Relationship Between Daily Walking Steps and Changes in QUS Parameters in Japanese Female College Students
  • DOI:
    10.1016/j.jocd.2010.01.106
    10.1016/j.jocd.2010.01.106
  • 发表时间:
    2010-01-01
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Akiko Koike;Jun Kitagawa;Yoshibumi Nakahara
    Akiko Koike;Jun Kitagawa;Yoshibumi Nakahara
  • 通讯作者:
    Yoshibumi Nakahara
    Yoshibumi Nakahara
Conditions for existence of single valued optimal transport maps on convex boundaries with nontwisted cost
具有非扭曲成本的凸边界上单值最优传输图的存在条件
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seonghyeon Jeong;Jun Kitagawa
    Seonghyeon Jeong;Jun Kitagawa
  • 通讯作者:
    Jun Kitagawa
    Jun Kitagawa
2012年10月23日X1.8フレアに伴った白色光放射と粒子加速
2012 年 10 月 23 日与 X1.8 耀斑相关的白光辐射和粒子加速
  • DOI:
  • 发表时间:
    2013
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyoko Watanabe;Toshifumi Shimizu;Shinsuke Imada;Jun Kitagawa;Satoshi Masuda;Kyoko Watanabe;渡邉恭子
    Kyoko Watanabe;Toshifumi Shimizu;Shinsuke Imada;Jun Kitagawa;Satoshi Masuda;Kyoko Watanabe;渡邉恭子
  • 通讯作者:
    渡邉恭子
    渡邉恭子
LDL Cholesterol Level Correlate with Urinary Deoxypyridinoline in Pre-Menopausal Japanese Women
  • DOI:
    10.1016/j.jocd.2010.01.029
    10.1016/j.jocd.2010.01.029
  • 发表时间:
    2010-01-01
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yukiko Kihara;Jun Kitagawa;Mizuho Nagata;Naonobu Takahira
    Yukiko Kihara;Jun Kitagawa;Mizuho Nagata;Naonobu Takahira
  • 通讯作者:
    Naonobu Takahira
    Naonobu Takahira
Effect of daily walking steps on ultrasound parameters of the calcaneus in elderly Japanese women
每日步行步数对日本老年女性跟骨超声参数的影响
共 21 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

Jun Kitagawa的其他基金

Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Numerical Methods for Optimal Transport with Applications to Manifold Learning on Singular Spaces
最优传输的数值方法及其在奇异空间流形学习中的应用
  • 批准号:
    2000128
    2000128
  • 财政年份:
    2020
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Regularity and Partial Regularity for Monge-Ampere-Type Equations, with Applications to Numerics
Monge-Ampere 型方程的正则性和偏正则性及其在数值中的应用
  • 批准号:
    1700094
    1700094
  • 财政年份:
    2017
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

硒补充对镉污染地区老年人群健康状态的干预效果及其机制研究
  • 批准号:
    42377420
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
宿主E3泛素连接酶Aip4通过促进HBV裸衣壳分泌以减少cccDNA循环补充的作用和机制研究
  • 批准号:
    82370606
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
自进化补充标签学习
  • 批准号:
    62306036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向补充上行方案的多资源调度及联合优化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鳗草海草床种苗补充限制的基本特征与关键受控因素研究
  • 批准号:
    42206142
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Supplementary funding to support the extension of the EDCTP-funded PANDORA-ID-NET trial
补充资金支持 EDCTP 资助的 PANDORA-ID-NET 试验的延期
  • 批准号:
    MC_PC_23004
    MC_PC_23004
  • 财政年份:
    2023
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Intramural
    Intramural
Supplementary funding to support the extension of the EDCTP-funded ETEC Vaccine Efficacy study
补充资金支持 EDCTP 资助的 ETEC 疫苗功效研究的扩展
  • 批准号:
    MC_PC_23002
    MC_PC_23002
  • 财政年份:
    2023
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Intramural
    Intramural
Supplementary funding to support the extension of the EDCTP-funded PrEPVacc trial
补充资金支持 EDCTP 资助的 PrEPVacc 试验的延期
  • 批准号:
    MC_PC_22003
    MC_PC_22003
  • 财政年份:
    2023
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Intramural
    Intramural
Supplementary funding to support the extension of the EDCTP-funded MMVC
补充资金以支持 EDCTP 资助的 MMVC 的延期
  • 批准号:
    MC_PC_23003
    MC_PC_23003
  • 财政年份:
    2023
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Intramural
    Intramural
Supplementary Funding Offer - MRC Weatherall Institute of Molecular Medicine (WIMM)
补充资金优惠 - MRC Weatherall 分子医学研究所 (WIMM)
  • 批准号:
    MC_UU_00021/3
    MC_UU_00021/3
  • 财政年份:
    2022
  • 资助金额:
    $ 1.44万
    $ 1.44万
  • 项目类别:
    Intramural
    Intramural