Geometry and Computation of Dynamics for Conservative Systems

保守系统的几何和动力学计算

基本信息

  • 批准号:
    0202032
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2008-01-31
  • 项目状态:
    已结题

项目摘要

Proposal #0202032PI: J.D. MeissInstitution: University of Colorado BoulderTitle: Geometry and Computation of Dynamics for Conservative SystemsABSTRACTThe principal investigator proposes to study the geometry of low-dimensional dynamical systems, especially symplectic and volume-preserving maps, using both computational and analytical techniques. While much is known about the two-dimensional case, there are still many questions about the onset and development of chaos for three- and higher-dimensional systems. While most oscillators are anharmonic (have twist), twistless bifurcations occur in one-parameter families of these systems. In the proposal, the geometry of twistless bifurcations will be studied leading to an understanding of fold and cusp bifurcations in the twist. The resulting geometry of the reconnection of resonances and exotic twistless tori will be studied numerically. These should play a role in limiting the stability domains for many dynamical systems. From the other side, the destruction of chaos can be profitably studied using a limit of extreme chaos, the anti-integrable (AI) limit as a starting point. In this proposal, the PI will use the AI limit to study coupled systems of maps and chaotic boundaries. Near this limit, structures such as exotic versions of the Smale horseshoe, and other heteroclinic tangles should occur. The onset of chaos in conservative systems is signaled by the destruction of tori. These have been studied by a rescaling analysis called the renormalization transformation. The structure of this transformation for four and higher dimensional systems is only beginning to be understood. The PI proposes that recent approximate versions of this transformation will give effective numerical strategies for finding the destruction and analyzing the topology of the resulting objects.Developing an understanding of the dynamics of conservative systems is important to applications including the design of particle accelerators, obtaining rates for simple chemical reactions, calculating confinement times for charged particles in plasma fusion devices, understanding the spectra of highly excited atomic systems, and designing efficient spacecraft trajectories in an era of lower budgets. Dynamics is such systems is often chaotic, which implies that prediction of specific trajectories is difficult; however, chaos can be profitably utilized to improve efficiency, for example of spacecraft trajectories, by judiciously applying small course corrections. Chaos can also dramatically affect the lifetimes of particles in confinement devices and the rates of chemical reactions. The PI proposes to develop geometrical and computational techniques that can be used to address these questions. In addition extending our understanding of chaos to higher dimensional cases will help populate the zoo of chaotic objects in multidimensional systems.
提案#0202032PI:J.D。Meissinstitution:科罗拉多大学Bouldertitle大学:保守系统的几何和动力学计算,用于研究主要研究者建议研究低维动力学系统的几何形状,尤其是使用计算机和分析技术的几何形状,尤其是符号和数量的图像。 尽管对二维案例有很多了解,但关于三维和高维系统的混乱的发作和发展仍然存在很多问题。 尽管大多数振荡器都是无声的(具有扭曲),但这些系统的单参数家族中发生了无扭曲的分叉。 在提案中,将研究无扭曲分叉的几何形状,从而了解扭曲中的折叠和尖叉分叉。 将通过数值研究共同点和异国无扭曲的托里的重新连接的几何形状。 这些应该在限制许多动态系统的稳定域中发挥作用。 从另一端,可以使用极限混乱的极限来盈利,这是抗积分(AI)的限制作为起点。 在此提案中,PI将使用AI极限研究地图和混乱边界的耦合系统。 接近此极限,应该发生诸如Smale Horseshoe的异国版本和其他杂斜纹缠结的结构。 保守系统中混乱的发作是通过托里的破坏来表示的。 这些已通过称为重新归一化转化的重新分析进行了研究。 对于四维系统的这种转换的结构才开始理解。 PI提出,这种转换的最新近似版本将提供有效的数值策略,以查找破坏和分析所得对象的拓扑结构。开发对保守系统动态的理解对于应用程序的应用很重要,包括粒子加速器的设计,获取速率,获取速率,从而获得速率。对于简单的化学反应,计算血浆融合设备中带电的颗粒的限制时间,了解高度预算的时代,了解高度激发的原子系统的光谱以及设计有效的航天器轨迹。 动力学是这种系统通常是混乱的,这意味着对特定轨迹的预测很困难。但是,通过明智地采用小型课程校正,可以利用混乱来提高效率,例如航天器轨迹。 混乱还会显着影响限制装置中颗粒的寿命和化学反应速率。 PI建议开发几何和计算技术,可用于解决这些问题。 此外,将我们对混乱的理解扩展到更高维度的情况将有助于在多维系统中填充混乱对象的动物园。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Meiss其他文献

James Meiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Meiss', 18)}}的其他基金

The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
  • 批准号:
    1812481
  • 财政年份:
    2018
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
  • 批准号:
    1211350
  • 财政年份:
    2012
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Chaos and Bifurcations in Volume-Preserving Dynamics
体积保持动力学中的混沌和分岔
  • 批准号:
    0707659
  • 财政年份:
    2007
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
  • 批准号:
    9810751
  • 财政年份:
    1999
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems
多维动力系统中混沌的破坏和秩序的检测
  • 批准号:
    9971760
  • 财政年份:
    1999
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
  • 批准号:
    9623216
  • 财政年份:
    1996
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
  • 批准号:
    9408697
  • 财政年份:
    1994
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
  • 批准号:
    9256335
  • 财政年份:
    1993
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
  • 批准号:
    9305847
  • 财政年份:
    1993
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
  • 批准号:
    9001103
  • 财政年份:
    1990
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

斯格明子的随机动力学及其神经形态计算应用器件基础研究
  • 批准号:
    12304160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同拓扑结构的半刚性聚电解质在离子溶液中的构象和动力学行为的计算机模拟
  • 批准号:
    22363005
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
凝聚态体系载流子动力学第一性原理计算软件发展
  • 批准号:
    12334004
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
Mg-Gd-Y体系中复杂析出过程的动力学计算
  • 批准号:
    52371010
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
颗粒介质作用下的多体系统动力学建模与计算方法研究
  • 批准号:
    12272197
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
  • 批准号:
    8544-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
  • 批准号:
    8544-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
  • 批准号:
    8544-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
  • 批准号:
    8544-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polarized logics, geometry of interaction, and the dynamics of resource sensitive computation
极化逻辑、交互几何以及资源敏感计算的动态
  • 批准号:
    8544-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了