Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems

多维动力系统中混沌的破坏和秩序的检测

基本信息

  • 批准号:
    9971760
  • 负责人:
  • 金额:
    $ 8.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

9971760MeissThe principal investigator proposes to study the destruction of chaos and the concurrent creation of structures (such as stable orbits and tori) in multi-dimensional (three or more dimensions) volume-preserving and symplectic maps. Both analytical and computational techniques will be employed. One approach is based on the "anti-integrable" (AI) limit, introduced by Aubry in 1992. This principle yields analytical bounds for the existence of chaotic dynamics, as well as an efficient numerical technique for continuation of families of periodic orbits. By extrapolation one can also follow quasiperiodic and heteroclinic orbits as well. The destruction of chaos is signaled by the first bifurcations in the system and the creation of order by the bifurcations that create stable orbits and tori. A second project is to classify the heteroclinic orbits and their bifurcations for a multi-dimensional version of the quadratic Henon map. Classification will be given through construction of "primary intersection manifolds," and by determining their homology on the "fundamental annuli." A topological classification of structures in dynamical systems is important both in the analysis of data, and in the interpretation of numerical experiments. It is well known that chaotic systems often have fractal invariant sets with various topological properties. These will be studied in this proposal through the "disconnectedness" and "discreteness" of compact sets. The PI will develop techniques for computational homology, yielding a definition for "lacunarity" and computational methods for Betti numbers of resolution dependent approximations to these sets.
9971760MeissThe主要研究者建议研究混乱的破坏,并在多维(三个或以上)体积预测和符号图中同时创建结构(例如稳定的轨道和Tori)。将采用分析技术和计算技术。一种方法是基于Aubry于1992年引入的“反积分”(AI)极限。该原理为混乱动力学的存在而产生分析界限,以及一种有效的数值技术,用于继续定期轨道的家族。通过外推也可以遵循准碘和杂斜轨道。混乱的破坏是由系统中的第一个分叉发出的,并通过产生稳定的轨道和托里的分叉创建秩序。第二个项目是将杂斜轨道及其分叉分类为二维亨逊地图的多维版本。分类将通过构建“主要交叉歧管”,并确定其在“基本环体”上的同源性。动态系统中结构的拓扑分类在数据分析以及数值实验的解释中都很重要。众所周知,混沌系统通常具有具有各种拓扑特性的分形不变套件。这些将在该提案中通过紧凑型集的“断开连接”和“离散性”进行研究。 PI将开发用于计算同源性的技术,从而为“漏洞”和betti数量的分辨率近似值的计算方法产生定义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Meiss其他文献

James Meiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Meiss', 18)}}的其他基金

The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
  • 批准号:
    1812481
  • 财政年份:
    2018
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
  • 批准号:
    1211350
  • 财政年份:
    2012
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Chaos and Bifurcations in Volume-Preserving Dynamics
体积保持动力学中的混沌和分岔
  • 批准号:
    0707659
  • 财政年份:
    2007
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Geometry and Computation of Dynamics for Conservative Systems
保守系统的几何和动力学计算
  • 批准号:
    0202032
  • 财政年份:
    2002
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
  • 批准号:
    9810751
  • 财政年份:
    1999
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
  • 批准号:
    9623216
  • 财政年份:
    1996
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
  • 批准号:
    9408697
  • 财政年份:
    1994
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
  • 批准号:
    9256335
  • 财政年份:
    1993
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
  • 批准号:
    9305847
  • 财政年份:
    1993
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
  • 批准号:
    9001103
  • 财政年份:
    1990
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

腈水解酶催化混乱性分子机制解析与反应专一性理性设计
  • 批准号:
    21978269
  • 批准年份:
    2019
  • 资助金额:
    66 万元
  • 项目类别:
    面上项目
时空大数据可视分析中信息混淆问题研究
  • 批准号:
    61872066
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
解微分变分不等式的数值方法及应用
  • 批准号:
    11071122
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
混沌保密通信若干基础问题研究
  • 批准号:
    61073187
  • 批准年份:
    2010
  • 资助金额:
    11.0 万元
  • 项目类别:
    面上项目
消除“车辆混乱”假设的交通流中观模型研究
  • 批准号:
    71071024
  • 批准年份:
    2010
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
  • 批准号:
    23K16963
  • 财政年份:
    2023
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on liquid water content fluctuation in high Reynolds number turbulence for early detection of rapidly developing clouds
高雷诺数湍流中液态水含量波动研究,用于早期探测快速发展的云
  • 批准号:
    20K04298
  • 财政年份:
    2020
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of innovative islanding detection technology and its application to smart grid technology infrastructure
创新孤岛检测技术开发及其在智能电网技术基础设施中的应用
  • 批准号:
    15K05965
  • 财政年份:
    2015
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a structural damage detection equipment using chaos attractor and relaxation particle filter
利用混沌吸引子和松弛粒子滤波器开发结构损伤检测设备
  • 批准号:
    26420470
  • 财政年份:
    2014
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new structural damage detection method using chaos attractor re-composition technique
利用混沌吸引子重构技术开发一种新的结构损伤检测方法
  • 批准号:
    23560581
  • 财政年份:
    2011
  • 资助金额:
    $ 8.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了