CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations

CRII:RI:使用低质量视觉数据学习:处理被动和主动退化

基本信息

项目摘要

This project is focused on effectively and robustly exploiting low-quality (LQ) visual data for computer vision tasks. While most current computer vision systems are designed for high-quality visual data, collected from "clear" environments where subjects are well observable without significant attenuation or alteration, a dependable vision system must reckon with the entire spectrum of degradations from unconstrained environments. With various degradations arising from the visual data acquisition and processing pipeline, the ubiquitous LQ visual data can dramatically deteriorate the model performance in practice. The project outcome can broadly benefit a variety of real-world applications, such as video surveillance, autonomous/assisted driving, robotics and medical image analysis, where LQ visual data has constituted major performance and reliability bottlenecks. This research categorizes common degradations into the two types: "passive degradations" that are caused by uncontrollable environment factors (such as bad weather and low light); and "active degradations" that are intentionally introduced in a controllable way to meet certain budget requirements (such as lossy compression). The project will mainly addresses two important technical questions: i) how to overcome passive degradations and achieve more robust high-level task performance on LQ video data, using end-to-end deep learning models; and ii) how to properly introduce and control active degradations to generate the desired form of LQ data, that both satisfies certain budget requirements and maintains the target task utility, using deep adversarial learning models. The resulting new techniques are to be verified on application examples such as video recognition, video annotation, video compression, and de-identified video data sharing for recognition purpose.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目专注于有效、稳健地利用低质量 (LQ) 视觉数据来执行计算机视觉任务。虽然大多数当前的计算机视觉系统都是为高质量的视觉数据而设计的,这些数据是从“清晰”的环境中收集的,在这些环境中,可以很好地观察对象,而不会出现明显的衰减或改变,但可靠的视觉系统必须考虑到不受约束的环境造成的整个退化范围。由于视觉数据采集和处理管道产生各种退化,无处不在的 LQ 视觉数据会极大地降低实践中的模型性能。该项目成果可广泛惠及各种实际应用,例如视频监控、自动/辅助驾驶、机器人和医学图像分析,其中 LQ 视觉数据构成了主要的性能和可靠性瓶颈。本研究将常见的退化分为两类:由不可控的环境因素(如恶劣天气和弱光)引起的“被动退化”;以及以可控方式有意引入的“主动降级”以满足某些预算要求(例如有损压缩)。该项目将主要解决两个重要的技术问题:i)如何使用端到端深度学习模型克服被动退化并在 LQ 视频数据上实现更稳健的高级任务性能; ii)如何使用深度对抗学习模型正确引入和控制主动降级以生成所需形式的 LQ 数据,既满足某些预算要求又保持目标任务效用。由此产生的新技术将在视频识别、视频注释、视频压缩和用于识别目的的去识别化视频数据共享等应用实例上进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better
DeblurGAN-v2:更快更好的去模糊(数量级)
Single Image Deraining: A Comprehensive Benchmark Analysis
单幅图像去雨:综合基准分析
Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study
通过对抗性训练实现保护隐私的视觉识别:一项试点研究
  • DOI:
    10.1007/978-3-030-01270-0_37
  • 发表时间:
    2018-07-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenyu Wu;Zhangyang Wang;Zhaowen Wang;Hailin Jin
  • 通讯作者:
    Hailin Jin
Enhance Visual Recognition under Adverse Conditions via Deep Networks
通过深度网络增强不利条件下的视觉识别
  • DOI:
    10.1109/tip.2019.2908802
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Liu, Ding;Cheng, Bowen;Wang, Zhangyang;Zhang, Haichao;Huang, Thomas S.
  • 通讯作者:
    Huang, Thomas S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhangyang Wang其他文献

INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing
INR-Arch:用于隐式神经表示处理中任意阶梯度计算的数据流架构和编译器
Fine-Tuning Language Models Using Formal Methods Feedback
使用形式化方法反馈微调语言模型
  • DOI:
    10.48550/arxiv.2310.18239
  • 发表时间:
    2023-10-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunhao Yang;N. Bhatt;Tyler Ingebr;William Ward;Steven Carr;Zhangyang Wang;U. Topcu
  • 通讯作者:
    U. Topcu
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge
根据胸部 X 光进行长尾、多标签疾病分类:CXR-LT 挑战概述
  • DOI:
    10.48550/arxiv.2310.16112
  • 发表时间:
    2023-10-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Holste;Yiliang Zhou;Song Wang;Ajay Jaiswal;Mingquan Lin;Sherry Zhuge;Yuzhe Yang;Dongkyun Kim;Trong;Minh;Jaehyup Jeong;Wongi Park;Jongbin Ryu;Feng Hong;Arsh Verma;Yosuke Yamagishi;Changhyun Kim;Hyeryeong Seo;Myungjoo Kang;L. A. Celi;Zhiyong Lu;Ronald M. Summers;George Shih;Zhangyang Wang;Yifan Peng
  • 通讯作者:
    Yifan Peng
HRBP: Hardware-friendly Regrouping towards Block-based Pruning for Sparse CNN Training
HRBP:针对稀疏 CNN 训练的基于块的修剪的硬件友好重组
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haoyu Ma;Chengming Zhang;Lizhi Xiang;Xiaolong Ma;Geng Yuan;Wenkai Zhang;Shiwei Liu;Tianlong Chen;Dingwen Tao;Yanzhi Wang;Zhangyang Wang;Xiaohui Xie
  • 通讯作者:
    Xiaohui Xie
TxVAD: Improved Video Action Detection by Transformers
TxVAD:通过 Transformers 改进视频动作检测

Zhangyang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhangyang Wang', 18)}}的其他基金

Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133861
  • 财政年份:
    2022
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
  • 批准号:
    2145346
  • 财政年份:
    2022
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212176
  • 财政年份:
    2022
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
  • 批准号:
    2113904
  • 财政年份:
    2021
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2053279
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    2053272
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
  • 批准号:
    2053269
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    1934755
  • 财政年份:
    2019
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937588
  • 财政年份:
    2019
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRGPRX2激活“皮肤-神经轴”在非FcεRI介导慢性自发性荨麻疹中的作用及分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗体介导的PRRSV感染通过FcγRI抑制I型干扰素产生的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
  • 批准号:
    2246157
  • 财政年份:
    2023
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
  • 批准号:
    2245712
  • 财政年份:
    2023
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CRII: RI: Secure Multi-Agent Reinforcement Learning Algorithms
CRII:RI:安全多代理强化学习算法
  • 批准号:
    2105007
  • 财政年份:
    2021
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CRII: RI: Learning a Timely Semantic Resource from Social Media Data
CRII:RI:从社交媒体数据中学习及时的语义资源
  • 批准号:
    2038457
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease
CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用
  • 批准号:
    1948510
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了