ExpandQISE: Track 1: Understanding and controlling decoherence in hybrid spin qubit-magnon systems for advancing education and building workforce in emerging quantum technologies

ExpandQISE:轨道 1:理解和控制混合自旋量子位-磁振子系统中的退相干,以推进新兴量子技术的教育和培养劳动力

基本信息

  • 批准号:
    2328822
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract: Quantum technologies are expected to become integral to the future sustained economic well-being of the country. Quantum computing and quantum sensing are essential parts of evolving quantum technologies. While many quantum technologies, such as quantum computers based on superconducting qubits, are already available to do advanced calculations, the need for ultra-low ( 0.1K) temperatures makes them challenging and less accessible. The team focuses on studying and controlling the quantum decoherence in hybrid diamond spin qubit-magnetic excitation (magnon) systems that could potentially serve as scalable quantum information processing platforms operating at higher temperatures (≥ 1 K) than superconducting qubits. The project's goals are to design, fabricate, characterize, and model hybrid architectures where diamond spin qubits and their interactions are controlled by magnons and spin current effects using heterostructures of thin-film or two-dimensional magnetic materials. The principal investigators at Wichita State University benefit from extending the capabilities in advanced nanofabrication of quantum materials and cryogenic quantum sensing from the University of Nebraska-Lincoln. The project also aims to advance education and build a workforce in emerging quantum technologies by training a postdoc, several graduate/undergraduate/K-12 (abbreviating Kindergarten through 12th grade) students, and four K-12 teachers.Technical Abstract: The realization of chip-integrated, spin-based quantum information processing (QIP) devices depends on the ability to controllably link distant spin qubits via a coherent quantum bus. To achieve direct spin-spin qubits coupling, architectures based on linear chains of spin defects positioned on the surface of wide-bandgap semiconductors have been proposed, but the short range (~ 10 nm) of the dipolar interaction between neighbors and disorder in their relative positions impose engineering challenges that are currently difficult to overcome. The goals of the project are to design, fabricate, characterize, and model hybrid architectures where diamond nitrogen-vacancy (NV) spin qubits (SQs) and their interactions are controlled by magnonics and spintronics effects using heterostructures of thin-film and two-dimensional (2D) magnetic materials. The project seeks to study SQ-magnon couplings in magnetic nanowires, 2D flakes, and cavities with different shapes and compositions and at a wide range of temperatures (0.3-350 K) and magnetic fields (up to 3 T) with the goal to identify the physical mechanisms of the rich magnetic excitation modes in magnetic materials at the nanoscale, the origin of decoherence in hybrid diamond SQ-magnon systems, and the optimal working parameters for using (classical and quantum) magnons to couple distant SQs without affecting their coherence. The proposed research activities include: (i) growth of magnetic materials (thin film, 2D) and nanofabrication of spintronic devices for generating and controlling magnons, (ii) perform static and dynamic magnetic, optical, and magneto-transport measurements, (iii) perform quantum sensing of magnons in thin-film and 2D magnets at ambient and cryogenic conditions to study the rich physics of spin excitations and explore quantum magnons, (iv) and finally establish theoretically and experimentally the strong coherent coupling between NV SQs and magnons relevant to QIP. The principal investigator at University of Nebraska Lincoln (UNL) helps the principal investigators at Wichita State University to extend UNL's quantum capabilities in advanced nanofabrication of quantum materials (diamond membranes doped with NVs, magnetic waveguides/devices) and cryogenic quantum sensing. The workforce development goal of this project is to train and mentor students in quantum information science (QIS) and technologies. As a new field with distinct knowledge and skills required to be competitive in the emerging quantum workforce, an opportunity exists to design innovative curricula for training graduate and undergraduate students and to create new education and outreach activities that integrate quantum concepts to recruit first-generation quantum scientists and engineers. The workforce development plans include: (1) design an applied learning module for quantum technologies course, (2) design traditional and animation-based course modules for emerging QIS technologies, (3) education, training, and mentoring Plans for K-12 Teachers and K-12 Students, and (4) promote inclusive and equitable research plan.This project is jointly funded by The Office of Multidisciplinary Activities (MPS/OMA), the Established Program to Stimulate Competitive Research (EPSCoR), and Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:预计量子技术将成为该国未来持续的经济福祉不可或缺的一部分。量子计算和量子传感是不断发展的量子技术的重要部分。尽管许多量子技术(例如基于超导量的量子计算机)已经可以进行高级计算,但对超低(0.1K)温度的需求使它们挑战且易于使用。该团队致力于研究和控制杂交钻石自旋量子量子磁兴兴奋(Magnon)系统的量子反应性,这些系统可能与超导量相比,在更高的温度(≥1K)下运行的可伸缩量子信息处理平台可能具有可扩展的量子信息处理平台。该项目的目标是设计,制造,表征和模型混合体系结构,其中使用薄膜或二维磁性材料的异质结构控制钻石旋转量子及其相互作用。威奇托州立大学的主要研究人员受益于扩展内布拉斯加州林肯大学量子材料和低温量子感测的高级纳米纳米化功能。该项目还旨在通过培训博士后,几个毕业生/本科/K-12(缩写到12年级的学生)和四个K-12老师来提高教育并建立新兴量子技术的劳动力。量子总线。为了实现直接自旋旋转码头的耦合,已经提出了基于位于宽带gap半导体表面上的自旋缺陷的线性链的架构,但是邻居之间偶极相互作用的短距离(约10 nm)在其相对位置遇到了目前难以克服的工程挑战。该项目的目标是设计,制造,表征和模型混合体系结构,其中钻石氮胶囊(NV)旋转量子器(SQS)及其相互作用受磁性和旋转型效应,使用薄膜和二维(2D)磁性材料的异质结构来控制。 The project seeks to study SQ-magnon couplings in magnetic nanowires, 2D flakes, and cavities with different shapes and compositions and at a wide range of temperatures (0.3-350 K) and magnetic fields (up to 3 T) with the goal to identify the physical mechanisms of the rich magnetic excitement modes in magnetic materials at the nanoscale, the origin of decoherence in hybrid diamond SQ-magnon systems,以及用于使用(经典和量子)磁铁的最佳工作参数,而不会影响其相干性。拟议的研究活动包括:(i)磁性材料(薄膜,2D)的生长以及用于生成和控制磁体的Spintronic设备的纳米构造,(ii)执行静态和动态磁性,光学和磁极传输的测量,(III)在薄纤维和2D型磁力的量化量的量子量和2D麦克努力量的量子敏感性上镁,(iv)并最终在实验中建立了与QIP相关的NV SQS和镁之间的强相干耦合。内布拉斯加州林肯大学(UNL)的首席研究员(UNL)帮助威奇托州立大学的主要研究人员扩展了UNL在量子材料的高级纳米纳米化功能(掺有NVS,磁性波导/设备)和低温量子敏感性方面的量子能力(钻石机制)。该项目的劳动力发展目标是培训量子信息科学(QIS)和技术的精神学生。作为一个具有独特知识和技能需要在新兴量子劳动力中具有竞争力的知识和技能的新领域,存在一个机会,可以为培训研究生和本科生设计创新的课程,并创建新的教育和外展活动,以整合量子概念以招募第一代量子科学家和工程师。劳动力发展计划包括:(1)设计量子技术课程的应用学习模块,(2)设计传统和动画的课程模块,用于新兴的QIS技术,(3)对K-11的教育,培训和心理计划的教育,培训和心理计划,以及K-11教师和K-12学生,以及(4)促进了共有和公平的研究计划。竞争性研究(EPSCOR)和技术边界计划(TIP/TF)。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kapildeb Ambal其他文献

Kapildeb Ambal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kapildeb Ambal', 18)}}的其他基金

RII Track 4: Metrology and spectroscopy of individual nanomagnets dynamics using quantum sensor-based (NV- center) nano-magnetometry
RII 轨道 4:使用基于量子传感器(NV 中心)纳米磁力测量的单个纳米磁体动力学的计量学和光谱学
  • 批准号:
    2033210
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

石羊河上游径流水源追踪量化的模拟研究
  • 批准号:
    42301153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
  • 批准号:
    62306029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
  • 批准号:
    42304051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
  • 批准号:
    62302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Global Centers Track 1: Understanding Climate Change Impacts on Transboundary Waters
全球中心轨道 1:了解气候变化对跨界水域的影响
  • 批准号:
    2330317
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AGS-FIRP Track 2: Understanding Vertical Variation of Energy Dissipation near the Surface for Solving the Mystery of the Observed Surface Energy Imbalance
AGS-FIRP 轨道 2:了解地表附近能量耗散的垂直变化,以解决观测到的地表能量不平衡之谜
  • 批准号:
    2231229
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
IRES Track I: Understanding Climate, Renewable Energy, and Oceanic Condition Effects on Intercontinental Connections of Birds of Prey
IRES 第一轨:了解气候、可再生能源和海洋条件对猛禽洲际联系的影响
  • 批准号:
    2246324
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了