CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
基本信息
- 批准号:2145346
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Efficient and scalable optimization algorithms (a.k.a., optimizers) are the cornerstone of almost all computational fields. In many practical applications of optimization, one will repeatedly perform a certain type of optimization tasks over a specific distribution of data. Learning to optimize (L2O) is an emerging paradigm that automatically develops an optimization method (optimizer) by learning from its performance on a set of past optimization tasks. Then on solving new but similar optimization tasks, the learned optimizer can demonstrate many promising benefits including faster convergence and/or better solution quality. As a fast-growing new field, many open challenges remain concerning both L2O's theoretical underpinnings and its practical applicability. In particular, the learned optimizers are often hard to interpret, trust, and scale.The project targets those research gaps and expands to mid-term and long-term research directions pertaining to the foundations of L2O. Specifically, the project proposes a multi-pronged research agenda including: a novel symbolic representation that makes L2O lightweight and more interpretable; a Bayesian L2O modeling framework that can quantify optimizer uncertainty; new customized designs of L2O model architectures and regularizers that can robustly encode problem-specific priors; and a generic amalgamation scheme to bridge L2O training to classical optimizers as teachers. Each thrust addresses a unique aspect of L2O (representation, calibration, model design, and training strategy). Meanwhile, those thrusts are compatible with each other and can be applied together. The proposed efforts synergize cutting-edge technical advances from deep learning, symbolic learning, Bayesian optimization, and meta learning. Successful outcomes are expected to turn L2O into principled science as well as a mature tool for real applications. This project has an integrated plan of result dissemination, education, and outreach. In particular, all new algorithms resulting from the project will be integrated into the Open-L2O software package, developed and maintained by the PI's group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高效且可扩展的优化算法(又称优化器)是几乎所有计算领域的基石。在优化的许多实际应用中,人们将对特定的数据分布重复执行某种类型的优化任务。学习优化(L2O)是一种新兴范例,它通过学习过去一组优化任务的性能来自动开发优化方法(优化器)。然后,在解决新的但类似的优化任务时,学习的优化器可以展示许多有希望的好处,包括更快的收敛和/或更好的解决方案质量。作为一个快速发展的新领域,L2O 的理论基础和实际适用性仍然存在许多开放的挑战。特别是,学习到的优化器通常难以解释、信任和扩展。该项目针对这些研究空白,并将其扩展到与 L2O 基础相关的中长期研究方向。具体来说,该项目提出了一个多管齐下的研究议程,包括:一种新颖的符号表示,使 L2O 轻量级且更易于解释;贝叶斯 L2O 建模框架,可以量化优化器的不确定性; L2O 模型架构和正则化器的新定制设计,可以对特定问题的先验进行稳健编码;以及一个通用的合并方案,将 L2O 培训与作为教师的经典优化器联系起来。每个主旨都涉及 L2O 的一个独特方面(表示、校准、模型设计和训练策略)。同时,这些推力是相互兼容、可以共同应用的。所提出的努力协同了深度学习、符号学习、贝叶斯优化和元学习的尖端技术进步。成功的成果有望将 L2O 转变为原理科学以及实际应用的成熟工具。该项目有一个成果传播、教育和推广的综合计划。特别是,该项目产生的所有新算法都将集成到由 PI 小组开发和维护的 Open-L2O 软件包中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和评估进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation
M-L2O:通过测试时间快速自适应实现可推广的学习优化
- DOI:10.48550/arxiv.2303.00039
- 发表时间:2023-02-28
- 期刊:
- 影响因子:0
- 作者:Junjie Yang;Xuxi Chen;Tianlong Chen;Zhangyang Wang;Yitao Liang
- 通讯作者:Yitao Liang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhangyang Wang其他文献
INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing
INR-Arch:用于隐式神经表示处理中任意阶梯度计算的数据流架构和编译器
- DOI:
10.1109/iccad57390.2023.10323650 - 发表时间:
2023-08-11 - 期刊:
- 影响因子:0
- 作者:
Stefan Abi;Rishov Sarkar;Dejia Xu;Zhiwen Fan;Zhangyang Wang;Cong Hao - 通讯作者:
Cong Hao
Fine-Tuning Language Models Using Formal Methods Feedback
使用形式化方法反馈微调语言模型
- DOI:
10.48550/arxiv.2310.18239 - 发表时间:
2023-10-27 - 期刊:
- 影响因子:0
- 作者:
Yunhao Yang;N. Bhatt;Tyler Ingebr;William Ward;Steven Carr;Zhangyang Wang;U. Topcu - 通讯作者:
U. Topcu
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge
根据胸部 X 光进行长尾、多标签疾病分类:CXR-LT 挑战概述
- DOI:
10.48550/arxiv.2310.16112 - 发表时间:
2023-10-24 - 期刊:
- 影响因子:0
- 作者:
G. Holste;Yiliang Zhou;Song Wang;Ajay Jaiswal;Mingquan Lin;Sherry Zhuge;Yuzhe Yang;Dongkyun Kim;Trong;Minh;Jaehyup Jeong;Wongi Park;Jongbin Ryu;Feng Hong;Arsh Verma;Yosuke Yamagishi;Changhyun Kim;Hyeryeong Seo;Myungjoo Kang;L. A. Celi;Zhiyong Lu;Ronald M. Summers;George Shih;Zhangyang Wang;Yifan Peng - 通讯作者:
Yifan Peng
HRBP: Hardware-friendly Regrouping towards Block-based Pruning for Sparse CNN Training
HRBP:针对稀疏 CNN 训练的基于块的修剪的硬件友好重组
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Haoyu Ma;Chengming Zhang;Lizhi Xiang;Xiaolong Ma;Geng Yuan;Wenkai Zhang;Shiwei Liu;Tianlong Chen;Dingwen Tao;Yanzhi Wang;Zhangyang Wang;Xiaohui Xie - 通讯作者:
Xiaohui Xie
TxVAD: Improved Video Action Detection by Transformers
TxVAD:通过 Transformers 改进视频动作检测
- DOI:
10.1145/3503161.3547992 - 发表时间:
2022-10-10 - 期刊:
- 影响因子:0
- 作者:
Zhenyu Wu;Zhou Ren;Yi Wu;Zhangyang Wang;G. Hua - 通讯作者:
G. Hua
Zhangyang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhangyang Wang', 18)}}的其他基金
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
- 批准号:
2212176 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
- 批准号:
2113904 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2053279 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
2053272 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
2053269 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934755 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937588 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
1755701 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于可变Petri网的RPA流程学习和优化方法研究
- 批准号:62302306
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多目标优化的下肢外骨骼拟人步态建模与学习算法研究
- 批准号:62303092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合作型强化学习算法的纯电动汽车连续决策优化研究
- 批准号:62302326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
通算协同的高准确、快收敛无线分布式学习优化研究
- 批准号:62301222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于数据挖掘和强化学习的动态随机车辆路径优化问题研究
- 批准号:72301109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant