CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease

CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用

基本信息

  • 批准号:
    1948510
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to identify disease-specific changes in human brain connectivity in early stages by developing a novel Deep Learning framework applicable to data with arbitrary structure such as graphs. This is important because regional brain variations often do not manifest as cognitive changes until significant brain pathology has accumulated, and a better understanding of the brain may be possible by characterizing changes in connectivity defined by relationships between different brain regions. Recent techniques with Deep Learning have demonstrated successful results with human-level precision in various image analysis tasks such as image classification, object detection, and image segmentation, but they cannot be directly applied to analyze brain connectivity because of its arbitrary structure. The key is to derive effective representation of the data; however, it is still unclear how to derive sophisticated representations for complex data such as graphs and it often requires large-scale datasets. A novel Graph Deep Learning technique that can detect subtle changes in brain connectivity with small numbers of samples is therefore necessary. Success of this project will facilitate understanding of the relationship between brain connectivity and neurodegenerative disease, mechanisms for early diagnosis, and discovery of new treatments. Technically, the overarching goal of this project is to design a Convolution Neural Network (CNN) model for graph data and to determine the extent to which it yields new scientific findings in neuroscience. To meet the goal, this project will focus on: 1) Developing a novel transform for graphs (e.g., brain networks) for their novel multi-resolution representations that are theoretically described by convolution, 2) Developing an efficient deep learning architecture for graphs that operates within a small sample-size regime to improve performance of disease diagnosis and sensitivity of statistical inferences, and 3) Validating the developed models on a simulation study as well as real brain network datasets for Alzheimer’s Disease to characterize disease-specific patterns in the brain connectivity. The developed framework will benefit various areas of neuroimaging research with functional and structural brain connectivity that are locally carried at small scales, and spur development of further studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发一种适用于具有任意结构(例如图形)的数据的新型深度学习框架来识别早期阶段人类大脑连接的特定疾病变化。这很重要,因为区域大脑变化通常不会表现为认知变化,直到出现显着的大脑变化。病理学已经积累起来,通过表征不同大脑区域之间关系所定义的连接变化,可以更好地了解大脑。最近的深度学习技术已经在各种图像分析任务(例如图像分类)中证明了具有人类水平精度的成功结果。 、目标检测、图像分割,但不能直接应用由于其任意结构,分析大脑连接性的关键是导出数据的有效表示;然而,目前尚不清楚如何导出复杂数据(例如图)的复杂表示,并且通常需要大规模数据集。因此,能够用少量样本检测大脑连接的细微变化的深度学习技术是必要的,该项目的成功将有助于理解大脑连接与神经退行性疾病之间的关系、早期诊断的机制以及新疗法的发现。该项目的总体目标是设计用于图数据的卷积神经网络(CNN)模型,并确定其在神经科学领域产生新科学发现的程度。为了实现这一目标,该项目将重点关注:1)开发一种新颖的图变换(例如,大脑网络)。 ) 理论上通过卷积描述的新颖的多分辨率表示,2) 开发一种在小样本范围内运行的图深度学习架构,以提高有效疾病诊断的性能和统计的敏感性3) 在模拟研究以及阿尔茨海默病的真实大脑网络数据集上验证开发的模型,以表征大脑连接中的疾病特定模式。开发的框架将有利于神经影像研究的各个领域的功能和结构大脑连接。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Covariance-based Multi-scale Representation of NeuroImaging Measures for Alzheimer Classification
学习基于协方差的阿尔茨海默病分类神经影像测量的多尺度表示
Image-Label Recovery on Fashion Data Using Image Similarity from Triple Siamese Network
使用三连体网络的图像相似性对时尚数据进行图像标签恢复
  • DOI:
    10.3390/technologies9010010
  • 发表时间:
    2021-01-21
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Debapriya Banerjee;Maria Kyrarini;Won Hwa Kim
  • 通讯作者:
    Won Hwa Kim
Locally Normalized Soft Contrastive Clustering for Compact Clusters
紧凑簇的局部归一化软对比聚类
  • DOI:
    10.24963/ijcai.2022/460
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Ma;Won Hwa Kim
  • 通讯作者:
    Won Hwa Kim
Dynamic covariance estimation via predictive Wishart process with an application on brain connectivity estimation
通过预测 Wishart 过程进行动态协方差估计并应用于大脑连接估计
  • DOI:
    10.1016/j.csda.2023.107763
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Meng;Fan Yang;Won Hwa Kim
  • 通讯作者:
    Won Hwa Kim
Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders
学习多分辨率图边缘嵌入以发现神经系统疾病中的大脑网络功能障碍
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ma, Xin;Wu, Guorong;Hwang, Seongjae;Kim, Won Hwa
  • 通讯作者:
    Kim, Won Hwa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Jiang其他文献

Driving safety assessment for ride-hailing drivers.
对网约车司机的驾驶安全评估。
  • DOI:
    10.1016/j.aap.2020.105574
  • 发表时间:
    2020-07-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huiying Mao;Xinwei Deng;Hong Jiang;Liang Shi;Hao Li;Liheng Tuo;Donghai Shi;F. Guo
  • 通讯作者:
    F. Guo
Novel photo-induced coupling reactions of 9-fluorenylidene-malononitrile or 1,1-diphenyl-2,2-dicyanoethylene with 10-methyl-9,10-dihydroacridine. A study on the photophysics of the reaction
9-亚芴基-丙二腈或1,1-二苯基-2,2-二氰基乙烯与10-甲基-9,10-二氢吖啶的新型光诱导偶联反应。
  • DOI:
    10.1002/cjoc.20030211033
  • 发表时间:
    2010-08-26
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Hong Jiang;Yong Liu;Guan‐Wu Wang;Lizhu Wu;C. Tung
  • 通讯作者:
    C. Tung
Realgar facilitates the Nrf2-Keap1-p62 positive feedback signaling axis via MAPKs and AKT to interfere with autophagy-induced apoptosis and oxidative stress in the hippocampus.
雄黄通过 MAPK 和 AKT 促进 Nrf2-Keap1-p62 正反馈信号轴,干扰自噬诱导的海马细胞凋亡和氧化应激。
Congenital nephrotic syndrome associated with 22q11.2 duplication syndrome in a Chinese family and functional analysis of the intronic NPHS1 c. 3286 + 5G > A mutation
一个中国家系与22q11.2重复综合征相关的先天性肾病综合征及内含子NPHS1 c的功能分析。
  • DOI:
    10.1186/s13052-019-0690-2
  • 发表时间:
    2019-08-23
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Liangliang Li;Z. Yi;Hongmin Xi;Lili Ma;Hui Shao;Wenwen Wang;H. Pan;Miaomiao Li;Hong Jiang
  • 通讯作者:
    Hong Jiang
Characteristics of Aerosol Optical Thickness as Well as the Relationship with NDVI in the Yangtze River Delta, China
长三角地区气溶胶光学厚度特征及其与NDVI的关系
  • DOI:
    10.3319/tao.2013.05.02.01(a)
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Z. Xiao;Hong Jiang;Guomo Zhou;Jian Chen;Renjian Zhang
  • 通讯作者:
    Renjian Zhang

Hong Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Jiang', 18)}}的其他基金

SHF: Small: A Distributed Scalable End-to-End Tail Latency SLO Guaranteed Resource Management Framework for Microservices
SHF:Small:分布式可扩展端到端尾部延迟 SLO 保证的微服务资源管理框架
  • 批准号:
    2226117
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: SMALL: STITCH: Request-SLO-Aware Orchestration for Large-scale Sensing Services over IoT-Edge-Cloud Hierarchy
SHF:SMALL:STITCH:基于 IoT-边缘-云层次结构的大规模传感服务的请求 SLO 感知编排
  • 批准号:
    2008835
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Historical Ecology of Coral Reef Ecosystems in the Hawaiian Archipelago
博士论文研究:夏威夷群岛珊瑚礁生态系统的历史生态学
  • 批准号:
    0926768
  • 财政年份:
    2009
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing
HEC:协作研究:SAM^2 工具包:用于高端计算的可扩展和自适应元数据管理
  • 批准号:
    0621526
  • 财政年份:
    2006
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: I-MINDS: Intelligent Multiagent Infrastructure for Distributed Systems in Education
SBIR 第一阶段:I-MINDS:教育分布式系统的智能多代理基础设施
  • 批准号:
    0441249
  • 财政年份:
    2005
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRGPRX2激活“皮肤-神经轴”在非FcεRI介导慢性自发性荨麻疹中的作用及分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗体介导的PRRSV感染通过FcγRI抑制I型干扰素产生的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
  • 批准号:
    2246157
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
  • 批准号:
    2245712
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: RI: Secure Multi-Agent Reinforcement Learning Algorithms
CRII:RI:安全多代理强化学习算法
  • 批准号:
    2105007
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: RI: Learning a Timely Semantic Resource from Social Media Data
CRII:RI:从社交媒体数据中学习及时的语义资源
  • 批准号:
    2038457
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
  • 批准号:
    2053269
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了