Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
基本信息
- 批准号:2053272
- 负责人:
- 金额:$ 21.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been a tremendous demand for bringing Deep Neural Network (DNN) powered functionality into Internet of Thing (IoT) devices to enable ubiquitous intelligent "IoT cameras". However, state-of-the-art DNNs have a prohibitive energy cost, making them impractical to be deployed in resource-constrained IoT platforms. This project will develop a novel energy-efficient DNN framework, via a systematic integration of platform, hardware, and algorithm co-design innovations. Despite a growing interest in energy-efficient DNNs, existing techniques lack a systematic optimization across the full stack of design abstraction, from systems through algorithms to hardware implementation. The proposed research advocates an innovative, holistic effort towards energy-efficient and adaptive DNN-powered "IoT cameras" by jointly optimizing the platform-, hardware-, and algorithm-level co-design efforts. On the system level, we will address how to automatically generate and adapt DNN models and implementation, to meet a variety of "IoT devices" application-specific performance needs and device-specific resource constraints. On the hardware level, we will leverage the observed high sparsity in DNN activations for energy-efficient hardware implementations of both DNN training and inference by using low-cost zero predictors and hence bypass unnecessary computations. On the algorithm level, we will develop innovative factorized sparsity regularization in DNN training as well as efficient, controllable adaptive inference mechanisms, fully complementing and closely integrating with our hardware innovations. The proposed research will advance the scientific domain of each level, from system and algorithm, to hardware and a holistic, systematic cross-level methodology for designing energy-efficient intelligent systems. Progress on this project will enable ubiquitous DNN-powered intelligent functions in a significantly increased number of resource-constrained daily-life devices, across numerous camera-based Internet-of-Things (IoT) applications such as traffic monitoring, self-driving and smart cars, personal digital assistants, surveillance and security, and augmented reality. As camera-based IoT devices penetrate all walks of life, by enabling DNN-powered intelligence to be pervasive in these devices, the proposed research can have a tremendous impact on global societies and economies. The research will be integrated with education on energy efficient deep learning. Educational activities include curriculum development, undergraduate research, and outreach to K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们迫切需要将深度神经网络 (DNN) 驱动的功能引入物联网 (IoT) 设备,以实现无处不在的智能“物联网相机”。然而,最先进的 DNN 的能源成本过高,使其部署在资源有限的物联网平台中不切实际。该项目将通过平台、硬件和算法协同设计创新的系统集成,开发一种新颖的节能 DNN 框架。尽管人们对节能 DNN 的兴趣日益浓厚,但现有技术缺乏对整个设计抽象堆栈(从系统到算法到硬件实现)的系统优化。拟议的研究主张通过联合优化平台、硬件和算法级协同设计工作,对节能和自适应 DNN 驱动的“物联网相机”进行创新、全面的努力。在系统层面,我们将解决如何自动生成和调整DNN模型和实现,以满足各种“物联网设备”特定应用的性能需求和特定设备的资源限制。在硬件层面,我们将利用在 DNN 激活中观察到的高稀疏性,通过使用低成本的零预测器来实现 DNN 训练和推理的节能硬件实现,从而绕过不必要的计算。在算法层面,我们将创新DNN训练中的因子式稀疏正则化以及高效可控的自适应推理机制,与我们的硬件创新充分互补并紧密结合。 拟议的研究将推进各个层面的科学领域,从系统和算法到硬件以及设计节能智能系统的整体、系统的跨层面方法。该项目的进展将使无处不在的 DNN 支持的智能功能在数量显着增加的资源有限的日常生活设备中实现,跨越众多基于摄像头的物联网 (IoT) 应用,例如交通监控、自动驾驶和智能汽车汽车、个人数字助理、监控和安全以及增强现实。随着基于摄像头的物联网设备渗透到各行各业,通过使 DNN 驱动的智能在这些设备中普遍存在,拟议的研究可以对全球社会和经济产生巨大影响。 该研究将与节能深度学习教育相结合。 教育活动包括课程开发、本科生研究以及对 K-12 学生的推广。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Audio Lottery: Speech Recognition Made Ultra-Lightweight, Noise-Robust, and Transferable
音频彩票:语音识别变得超轻量、抗噪且可转移
- DOI:
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:Shaojin Ding;Tianlong Chen;Zhangyang Wang
- 通讯作者:Zhangyang Wang
Sanity Checks for Lottery Tickets: Does Your Winning Ticket ReallyWin the Jackpot?
彩票的健全性检查:您的中奖彩票真的赢得大奖吗?
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Ma, Xiaolong;Yuan, Geng;Shen, Xuan;Chen, Tianlong;Chen, Xuxi;Chen, Xiaohan;Liu, Ning;Qin, Minghai;Liu, Sijia;Wang, Zhangyang;et al
- 通讯作者:et al
Data-Efficient Double-Win Lottery Tickets from Robust Pre-training
通过强大的预训练实现数据高效的双赢彩票
- DOI:10.48550/arxiv.2206.04762
- 发表时间:2022-06-09
- 期刊:
- 影响因子:0
- 作者:Tianlong Chen;Zhenyu (Allen) Zhang;Sijia Liu;Yang Zhang;Shiyu Chang;Zhangyang Wang
- 通讯作者:Zhangyang Wang
The Lottery Tickets Hypothesis for Supervised and Self-Supervised Pre-Training in Computer Vision Models
计算机视觉模型中监督和自监督预训练的彩票假设
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Chen, Tianlong;Frankle, Jonathan;Chang, Shiyu;Liu, Sijia;Zhang, Yang;Carbin, Michael;Wang, Zhangyang
- 通讯作者:Wang, Zhangyang
The lottery ticket hypothesis for pre-trained BERT networks
预训练 BERT 网络的彩票假设
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Chen, Tianlong;Frankle, Jonathan;Chang, Shiyu;Liu, Sijia;Zhang, Yang;Wang, Zhangyang;Carbin, Michael
- 通讯作者:Carbin, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhangyang Wang其他文献
INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing
INR-Arch:用于隐式神经表示处理中任意阶梯度计算的数据流架构和编译器
- DOI:
10.1109/iccad57390.2023.10323650 - 发表时间:
2023-08-11 - 期刊:
- 影响因子:0
- 作者:
Stefan Abi;Rishov Sarkar;Dejia Xu;Zhiwen Fan;Zhangyang Wang;Cong Hao - 通讯作者:
Cong Hao
Fine-Tuning Language Models Using Formal Methods Feedback
使用形式化方法反馈微调语言模型
- DOI:
10.48550/arxiv.2310.18239 - 发表时间:
2023-10-27 - 期刊:
- 影响因子:0
- 作者:
Yunhao Yang;N. Bhatt;Tyler Ingebr;William Ward;Steven Carr;Zhangyang Wang;U. Topcu - 通讯作者:
U. Topcu
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge
根据胸部 X 光进行长尾、多标签疾病分类:CXR-LT 挑战概述
- DOI:
10.48550/arxiv.2310.16112 - 发表时间:
2023-10-24 - 期刊:
- 影响因子:0
- 作者:
G. Holste;Yiliang Zhou;Song Wang;Ajay Jaiswal;Mingquan Lin;Sherry Zhuge;Yuzhe Yang;Dongkyun Kim;Trong;Minh;Jaehyup Jeong;Wongi Park;Jongbin Ryu;Feng Hong;Arsh Verma;Yosuke Yamagishi;Changhyun Kim;Hyeryeong Seo;Myungjoo Kang;L. A. Celi;Zhiyong Lu;Ronald M. Summers;George Shih;Zhangyang Wang;Yifan Peng - 通讯作者:
Yifan Peng
HRBP: Hardware-friendly Regrouping towards Block-based Pruning for Sparse CNN Training
HRBP:针对稀疏 CNN 训练的基于块的修剪的硬件友好重组
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Haoyu Ma;Chengming Zhang;Lizhi Xiang;Xiaolong Ma;Geng Yuan;Wenkai Zhang;Shiwei Liu;Tianlong Chen;Dingwen Tao;Yanzhi Wang;Zhangyang Wang;Xiaohui Xie - 通讯作者:
Xiaohui Xie
TxVAD: Improved Video Action Detection by Transformers
TxVAD:通过 Transformers 改进视频动作检测
- DOI:
10.1145/3503161.3547992 - 发表时间:
2022-10-10 - 期刊:
- 影响因子:0
- 作者:
Zhenyu Wu;Zhou Ren;Yi Wu;Zhangyang Wang;G. Hua - 通讯作者:
G. Hua
Zhangyang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhangyang Wang', 18)}}的其他基金
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
- 批准号:
2145346 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
- 批准号:
2212176 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
- 批准号:
2113904 - 财政年份:2021
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2053279 - 财政年份:2020
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
2053269 - 财政年份:2020
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934755 - 财政年份:2019
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937588 - 财政年份:2019
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
1755701 - 财政年份:2018
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 21.94万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 21.94万 - 项目类别:
Continuing Grant