CAREER: Interpretable Deep Modeling of Discrete Time Event Sequences

职业:离散时间事件序列的可解释深度建模

基本信息

项目摘要

Discrete Time Event Sequences (DTES) are ordered event sequences with a concrete timestamp associated with each event. DTES are ubiquitous in our daily life. One representative example is patient electronic health records. Computational modeling of DTES can reveal the hidden event evolving mechanisms and improve the performance of endpoint analytical tasks such as sequence forecasting and grouping. Conventional approaches for analyzing DTES are typically based on strong statistical assumptions and may not work well in practice. Motivated by the recent empirical success of deep learning methods in various application domains, the objective of this project is to develop interpretable deep learning approaches for modeling DTES. This project validates the utility of the developed algorithms in various medical applications. It incorporates the resulting research outcomes into curriculum development and courses, to train a new generation of machine learning and data mining practitioners. In addition, special training opportunities are provided to high school students and community college students for a broader education of modern data analysis techniques.This project consists of three synergistic research thrusts. First, it develops a series of approaches for integrating external domain knowledge into the modeling process. This guarantees the learned models align well with the domain knowledge and at the same time provides effective regularizations to avoid overfitting. Second, it devises approaches based on mimic learning and pattern dissection to interpret the knowledge hidden in the learned models. This makes the learned models much more practical and reusable. Third, effective model and data sharing mechanisms are developed to transfer the knowledge across similar learning tasks. This maximizes the utilizations of the available samples for each task by leveraging the task relationships. Two key problems in medical domain, hospital readmission and disease phenotyping, are used as the target applications for validating the proposed approaches based on several real-world large-scale patient electronic health record data sets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离散时间事件序列(DTE)是与每个事件相关的具体时间戳的订购事件序列。 DTE在我们的日常生活中无处不在。一个代表性的例子是患者电子健康记录。 DTE的计算建模可以揭示隐藏事件不断发展的机制,并提高端点分析任务的性能,例如序列预测和分组。分析DTE的常规方法通常基于强烈的统计假设,并且在实践中可能无法很好地工作。由深度学习方法在各种应用领域的最新经验成功的推动下,该项目的目的是开发可解释的深度学习方法来建模DTE。该项目验证了在各种医学应用中开发算法的实用性。它将结果的研究成果纳入了课程开发和课程中,以培训新一代的机器学习和数据挖掘从业人员。此外,还向高中生和社区大学生提供了特殊的培训机会,以对现代数据分析技术进行更广泛的教育。该项目由三个协同的研究推力组成。首先,它开发了一系列用于将外部领域知识集成到建模过程中的方法。这确保了学识渊博的模型与域知识很好地保持一致,同时提供了有效的正规化以避免过度拟合。其次,它根据模仿学习和模式解剖来设计方法,以解释隐藏在学习模型中的知识。这使学习的模型更加实用和可重复使用。第三,开发了有效的模型和数据共享机制,以在相似的学习任务中转移知识。这通过利用任务关系来最大化每个任务的可用样本的利用。医疗领域,医院再入院和疾病表型的两个关键问题被用作基于几个现实世界中的大规模患者电子健康记录数据集验证所提出的方法的目标应用。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来评估的支持。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncovering Pattern Formation of Information Flow
Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders
  • DOI:
    10.24963/ijcai.2018/483
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tengfei Ma;Cao Xiao;Jiayu Zhou;Fei Wang
  • 通讯作者:
    Tengfei Ma;Cao Xiao;Jiayu Zhou;Fei Wang
Order-Preserving Metric Learning for Mining Multivariate Time Series
Heterogeneous Hyper-Network Embedding
Identifying organ dysfunction trajectory-based subphenotypes in critically ill patients with COVID-19.
  • DOI:
    10.1038/s41598-021-95431-7
  • 发表时间:
    2021-08-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Su C;Xu Z;Hoffman K;Goyal P;Safford MM;Lee J;Alvarez-Mulett S;Gomez-Escobar L;Price DR;Harrington JS;Torres LK;Martinez FJ;Campion TR Jr;Wang F;Schenck EJ
  • 通讯作者:
    Schenck EJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Wang其他文献

Accumulation, metabolites formation and elimination behavior of rac-glufosinate-ammonium and glufosinate-P in zebrafish (Danio rerio).
外消旋草铵膦和草铵膦在斑马鱼(斑马鱼)中的积累、代谢物形成和消除行为
  • DOI:
    10.1016/j.fochx.2022.100383
  • 发表时间:
    2022-10-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Fei Wang;Qiao Lin;Xueqin Shi;Yunfang Li;Pengyu Deng;Yuping Zhang;Deyu Hu
  • 通讯作者:
    Deyu Hu
Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.
利用微型近红外(NIR)光谱仪引擎对霍山金钗石斛物种进行绝对无损判别。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian Hu;Hailong Yang;Qi;Hui Zhang;Lei Nie;Lian Li;Jin;Dongtao Liu;Wei Jiang;Fei Wang;Hengchang Zang
  • 通讯作者:
    Hengchang Zang
High Current Operation and Analysis on InGaN/GaN-based LED with Improved Hole Injection Structure
改进空穴注入结构的 InGaN/GaN 基 LED 的高电流运行与分析
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chaoqiang Zhang;Ke Gao;Fei Wang;Zhiming Chen;P. Shields;Sean Lee;Yanqin Wang;Dongyan Zhang;Hongwei Liu;Pingjuan Niu
  • 通讯作者:
    Pingjuan Niu
On the local existence for an active scalar equation in critical regularity setting
临界正则设定下主动标量方程的局部存在性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walter Rusin;Fei Wang
  • 通讯作者:
    Fei Wang
Up-regulation of TNF Receptor-associated Factor 7 after spinal cord injury in rats may have implication for neuronal apoptosis
大鼠脊髓损伤后 TNF 受体相关因子 7 的上调可能与神经元凋亡有关
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Dawei Xu;Wei Zhao;Chengniu Wang;Hao Zhu;Ming;Xin;Wei Liu;Fei Wang;Jianbo Fan;Chu Chen;Daoran Cui;Zhiming Cui
  • 通讯作者:
    Zhiming Cui

Fei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Wang', 18)}}的其他基金

Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
  • 批准号:
    2320328
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
ERI: Progressive Formation and Collapse Mechanisms of Sinkholes Caused by Defective Buried Pipes
ERI:埋地管道缺陷造成天坑的渐进形成和塌陷机制
  • 批准号:
    2301392
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212175
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
  • 批准号:
    2027970
  • 财政年份:
    2020
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
  • 批准号:
    1833794
  • 财政年份:
    2018
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
  • 批准号:
    1716432
  • 财政年份:
    2017
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
EAGER: Patient Similarity Learning with Massive Clinical Data and Its Applications in Cohort Identification
EAGER:海量临床数据的患者相似性学习及其在队列识别中的应用
  • 批准号:
    1650723
  • 财政年份:
    2016
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
CAREER: The molecular mechanisms governing fate decisions of human embryonic stem cells
职业:控制人类胚胎干细胞命运决定的分子机制
  • 批准号:
    0953267
  • 财政年份:
    2010
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Star Polymer Micelles as Targeted Drug Delivery System
SBIR 第一阶段:星形聚合物胶束作为靶向药物输送系统
  • 批准号:
    0230108
  • 财政年份:
    2003
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
SBIR PHASE I: Advanced Membrane for Waste Metal Recovery
SBIR 第一阶段:用于废金属回收的先进膜
  • 批准号:
    9561754
  • 财政年份:
    1996
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant

相似国自然基金

知识驱动的可解释性药物重定位方法及作用机制研究
  • 批准号:
    62373348
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
深度神经网络可解释分析度量及视觉高风险领域应用研究
  • 批准号:
    62372215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向异构融合智能家居系统的可靠可解释异常检测机制
  • 批准号:
    62302282
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向开源情报多维动态关联的可解释建模关键技术研究
  • 批准号:
    62302507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合多模态信息的动态可解释推荐方法研究
  • 批准号:
    62372335
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
  • 批准号:
    24K18602
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Excellence in Research: Harnessing Big Data and Domain Knowledge to Advance Deep Learning for Interpretable Cell Quantitation
卓越的研究:利用大数据和领域知识推进深度学习以实现可解释的细胞定量
  • 批准号:
    2302274
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Interpretable Deep Learning Models for Analysis of Longitudinal 3D Mammography Screenings
用于分析纵向 3D 乳房 X 光检查的可解释深度学习模型
  • 批准号:
    10667745
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了