Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
基本信息
- 批准号:2212175
- 负责人:
- 金额:$ 26.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning has grown to increase prominence over the past years, finding applications in various domains from image and speech processing to disease diagnosis. Despite the great success of machine learning techniques, massive amounts of data are collected and used to train the machine learning models. The privacy of sensitive data has become a big concern. Existing efforts are still preliminary, and enormous challenges remain to be resolved. Crucially, stronger privacy protection guarantees often sacrifice important properties of machine learning models, such as predictive utility and fairness, which can be undesirable or completely unacceptable. This project develops a consolidated privacy protection framework for machine learning systems that comprehensively considers the optimal trade-offs between computational privacy and several critical properties of machine learning, including utility, fairness, and distributed learning. The project will provide a comprehensive set of tools to protect data privacy for real-world machine learning applications under different circumstances. The privacy-preserving techniques will have a transformative impact on machine learning systems used by various sectors, allowing companies and hospitals to enjoy the advantages of machine learning techniques on big data while protecting data privacy under corresponding regulations.The research project thoroughly examines and discusses the real-world complicacy or restrictions when applying differential privacy, from privacy-utility trade-off, privacy-fairness relation, privacy in distributed learning, to post-learning privacy protection. The framework developed by the project takes deep root in rigorous optimization frameworks, often accompanied by theoretical guarantees and aided by cutting-edge algorithmic tools such as meta-learning, adversarial learning, and federated learning. Besides, the framework carries the following methodological innovations: differential privacy tailored to learning problems; customized privacy addressing heterogeneity in collaborative learning; privacy-protection of learned models through unlearning; consolidated privacy and fairness in learning. Those efforts will significantly augment the practicality and scalability of differential privacy. The project will be systematically evaluated on various real-world medical applications, and the tools will be readily used to tackle critical challenges in medical research. The outcomes will be incorporated into multiple courses at both undergraduate and graduate levels. The research outcomes will be disseminated broadly and comprehensively through open-source software releases and workshops, the involvement of undergraduate research, and outreach to K-12 education, focusing on minorities and under-representative groups in STEM education. Students at different levels and disciplines, STEM and liberal arts, will be participating in the research on privacy and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年中,机器学习已增强,从图像和语音处理到疾病诊断中的各种领域中的应用。尽管机器学习技术取得了巨大的成功,但仍收集了大量数据并用于训练机器学习模型。敏感数据的隐私已成为一个大问题。现有的努力仍然是初步的,巨大的挑战仍有待解决。至关重要的是,更强大的隐私保护通常会牺牲机器学习模型的重要特性,例如预测效用和公平性,这是不受欢迎的或完全不可接受的。该项目为机器学习系统开发了一个合并的隐私保护框架,该框架全面考虑了计算隐私与机器学习的几个关键属性之间的最佳权衡,包括效用,公平和分布式学习。该项目将提供一组全面的工具,以保护在不同情况下为现实世界的机器学习应用程序保护数据隐私。保护隐私技术将对各个部门使用的机器学习系统产生变革性的影响,使公司和医院能够在大数据上享受机器学习技术的优势,同时在相应的法规下保护数据隐私。该研究项目在相应的研究项目中彻底审查并讨论了现实性的复杂性或限制,从而在差异上分配了差异性,并限制了差异性的私有性,而差异性地分配,涉及隐私性,限制,并将其分配给隐私权,并将其分配到隐私性,限制,并将其分配到隐私性,限制,并将其分配到隐私性,限制,并将其分配到隐私性,并将学习后隐私保护。该项目开发的框架深入扎根于严格的优化框架,通常伴随着理论保证,并得到了尖端的算法工具,例如元学习,对抗性学习和联合学习。此外,该框架还带有以下方法论创新:针对学习问题量身定制的差异隐私;定制的隐私在协作学习中解决异质性;通过学习对学习模型的隐私保护;巩固学习的隐私和公平性。这些努力将大大增强差异隐私的实用性和可扩展性。该项目将在各种现实世界中进行系统评估,并且该工具将很容易用于应对医学研究中的关键挑战。结果将在本科和研究生级别的多个课程中纳入多个课程。研究成果将通过开源软件的发布和讲习班,本科研究的参与以及向K-12教育的推广,重点关注STEM教育中的少数群体和代表性不足的团体。不同层次和学科,STEM和文科的学生将参加有关隐私和机器学习的研究。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning enabled subgroup analysis with real-world data to inform clinical trial eligibility criteria design.
- DOI:10.1038/s41598-023-27856-1
- 发表时间:2023-01-12
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Patient Similarity Learning with Selective Forgetting
通过选择性遗忘进行患者相似性学习
- DOI:10.1109/bibm55620.2022.9995016
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Qian, Wei;Zhao, Chenxu;Shao, Huajie;Chen, Minghan;Wang, Fei;Huai, Mengdi
- 通讯作者:Huai, Mengdi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Wang其他文献
Single molecule force spectroscopy studies of DNA binding and chaperone proteins
DNA 结合和伴侣蛋白的单分子力谱研究
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Fei Wang - 通讯作者:
Fei Wang
Actin critical concentration optimizes at intermediate [cytochalasin B]/[actin] ratios.
肌动蛋白临界浓度在中间[细胞松弛素 B]/[肌动蛋白]比率下优化。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Fei Wang;B.Jose Luis Arauz;Bennie R. Ware - 通讯作者:
Bennie R. Ware
Estimation of the Average Fading Powers for AF Relay System
AF中继系统平均衰落功率的估计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ning Cao;Fei Wang;Yunfei Chen;Xiaowen Hu;Min Long - 通讯作者:
Min Long
Title A synthetic chloride channel restores chloride conductance inhuman cystic fibrosis epithelial cells
标题 合成氯通道可恢复人囊性纤维化上皮细胞中的氯电导
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
B. Shen;Xiang Li;Fei Wang;Xiao;Dan Yang - 通讯作者:
Dan Yang
PDGFR β-antagonistic affibody mediated tumor-targeted TNF α for enhanced radiotherapy in lung cancer
PDGFR β-拮抗抗体介导的肿瘤靶向 TNF α 用于肺癌的强化放疗
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiaohui Tang;Jie Chen;Zhenxiong Zhao;Jie Liu;Ranfei Yu;Kunlong Zhao;Fei Wang;Yang Li;Baoqing Tian;Dandan Yuan;Qin Wei;Yuguo Liu;Z. Gao;Qing Fan;Z. Gao - 通讯作者:
Z. Gao
Fei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Wang', 18)}}的其他基金
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
$ 26.51万 - 项目类别:
Continuing Grant
ERI: Progressive Formation and Collapse Mechanisms of Sinkholes Caused by Defective Buried Pipes
ERI:埋地管道缺陷造成天坑的渐进形成和塌陷机制
- 批准号:
2301392 - 财政年份:2023
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
- 批准号:
2027970 - 财政年份:2020
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
- 批准号:
1833794 - 财政年份:2018
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
CAREER: Interpretable Deep Modeling of Discrete Time Event Sequences
职业:离散时间事件序列的可解释深度建模
- 批准号:
1750326 - 财政年份:2018
- 资助金额:
$ 26.51万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
- 批准号:
1716432 - 财政年份:2017
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
EAGER: Patient Similarity Learning with Massive Clinical Data and Its Applications in Cohort Identification
EAGER:海量临床数据的患者相似性学习及其在队列识别中的应用
- 批准号:
1650723 - 财政年份:2016
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
CAREER: The molecular mechanisms governing fate decisions of human embryonic stem cells
职业:控制人类胚胎干细胞命运决定的分子机制
- 批准号:
0953267 - 财政年份:2010
- 资助金额:
$ 26.51万 - 项目类别:
Continuing Grant
SBIR Phase I: Star Polymer Micelles as Targeted Drug Delivery System
SBIR 第一阶段:星形聚合物胶束作为靶向药物输送系统
- 批准号:
0230108 - 财政年份:2003
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
SBIR PHASE I: Advanced Membrane for Waste Metal Recovery
SBIR 第一阶段:用于废金属回收的先进膜
- 批准号:
9561754 - 财政年份:1996
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
相似国自然基金
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于III-V族半导体纳米结构阵列的短波红外偏振探测理论与方法研究
- 批准号:62305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高性能TM(I)-Ln(III)单分子磁体的可控合成与构效关系研究
- 批准号:22371031
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 26.51万 - 项目类别:
Standard Grant