CAREER: Identifying and Exploiting Multi-Agent Symmetries

职业:识别和利用多智能体对称性

基本信息

  • 批准号:
    2237963
  • 负责人:
  • 金额:
    $ 53.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

It is widely believed by scientists that our universe follows certain symmetry patterns and principles, which lead to profound implications such as conservation laws. Artificial intelligence (AI) can and has already benefited tremendously from exploiting these symmetries. This project seeks to identify and exploit symmetries that are prevalent in cooperative AI tasks, where a group of multiple autonomous sequential decision makers, or agents, plan and learn to maximize their combined benefit. As an example, consider the application of adaptive traffic signal control, where each intersection can be modeled as an agent controlling its traffic signal in a way that adapts to real-time traffic conditions to reduce congestion. There exist certain symmetries when the topology of the road network is regular, e.g., as a 4-connected grid, and the road condition is uniform. When done properly, such multi-agent symmetries can be identified and exploited to greatly improve the efficiency and effectiveness of the current solutions to cooperative AI. This project also integrates the proposed research into an array of education initiatives, playing key roles in the curriculum development and undergraduate research experiences at the PI's university, as well as outreach activities that bridge academia with industry practitioners and community stakeholders.This research will establish a unified framework and develop a set of interdependent methods that formulate, identify, and exploit multi-agent symmetries for cooperative AI tasks. The research first adopts a mathematically rigorous language to formulate the notion of multi-agent symmetry into the framework of symmetric Markov game, revealing its core property which can be exploited by planning and learning methods. Then, the research plan concretizes how to exploit several most common types of multi-agent symmetries, including permutation symmetries, Euclidean symmetries, and hierarchies of multi-agent symmetries of mixed types. Next, the research plan discusses issues that are critical for practice, including identifying and exploiting approximate multi-agent symmetries and dealing with partial observability. Finally, the research features several real-world applications, including adaptive traffic signal control, automated circuit design, and material design, to evaluate and showcase the proposed methodology. This project is jointly funded by Robust Intelligence and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学家普遍认为,我们的宇宙遵循某些对称模式和原理,这导致了守恒定律等深远的影响。人工智能 (AI) 可以而且已经从利用这些对称性中获益匪浅。该项目旨在识别和利用协作人工智能任务中普遍存在的对称性,其中一组多个自主顺序决策者或代理进行计划和学习,以最大化其综合效益。例如,考虑自适应交通信号控制的应用,其中每个交叉口都可以建模为一个代理,以适应实时交通状况的方式控制其交通信号,以减少拥堵。当路网拓扑规则(例如四连通网格)且路况均匀时,存在一定的对称性。如果处理得当,这种多智能体对称性可以被识别和利用,从而大大提高当前协作人工智能解决方案的效率和有效性。该项目还将拟议的研究整合到一系列教育举措中,在 PI 大学的课程开发和本科生研究经验以及在学术界与行业从业者和社区利益相关者之间架起桥梁的外展活动中发挥着关键作用。这项研究将建立一个统一框架并开发一套相互依赖的方法,用于制定、识别和利用多代理对称性来执行协作人工智能任务。该研究首先采用数学严谨的语言将多主体对称性的概念表述到对称马尔可夫博弈的框架中,揭示了其可以通过规划和学习方法利用的核心属性。然后,研究计划具体化了如何利用几种最常见的多智能体对称类型,包括排列对称、欧几里得对称和混合类型多智能体对称的层次结构。接下来,研究计划讨论对实践至关重要的问题,包括识别和利用近似多智能体对称性以及处理部分可观察性。最后,该研究以几个实际应用为特色,包括自适应交通信号控制、自动化电路设计和材料设计,以评估和展示所提出的方法。 该项目由 Robust Intelligence 和刺激竞争研究既定计划 (EPSCoR) 联合资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Zhang其他文献

Magnetic Anomaly Detection Based on Full Connected Neural Network
基于全连接神经网络的磁异常检测
  • DOI:
    10.1109/access.2019.2943544
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Shuchang Liu;Jiafei Hu;Peisen Li;Chengbiao Wan;Zhuo Chen;M. Pan;Qi Zhang;Zhongyan Liu;Siwei Wang;Dixiang Chen;Jingtao Hu;Xue Pan
  • 通讯作者:
    Xue Pan
Complex text processing by the temporal context machines
时间上下文机器的复杂文本处理
MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
MoRA:用于参数高效微调的高阶更新
  • DOI:
    10.48550/arxiv.2405.12130
  • 发表时间:
    2024-05-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Jiang;Shaohan Huang;Shengyue Luo;Zihan Zhang;Haizhen Huang;Furu Wei;Weiwei Deng;Feng Sun;Qi Zhang;Deqing Wang;Fuzhen Zhuang
  • 通讯作者:
    Fuzhen Zhuang
Pancreatic cystic neoplasms: current and future approaches to identify patients at risk
胰腺囊性肿瘤:当前和未来识别高危患者的方法
  • DOI:
    10.1097/jp9.0000000000000033
  • 发表时间:
    2019-11-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Zhang;Yiwen Chen;Bai Xueli;T. Liang
  • 通讯作者:
    T. Liang
A material removal model considering the effect of anisotropy on the processing of laser metal deposition Ti-alloy
考虑各向异性对激光金属沉积钛合金加工影响的材料去除模型

Qi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Zhang', 18)}}的其他基金

RI: Small: Cooperative Planning and Learning via Scalable and Learnable Multi-Agent Commitments
RI:小型:通过可扩展和可学习的多代理承诺进行合作规划和学习
  • 批准号:
    2154904
  • 财政年份:
    2022
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
CCRI: Planning-C: Planning to Build Digital Infrastructure for Real-Time, Continual, and Intelligent Transportation Analysis and Management
CCRI:Planning-C:规划构建实时、持续、智能交通分析和管理的数字基础设施
  • 批准号:
    2213731
  • 财政年份:
    2022
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
GOALI: Coordination of Multi-Stakeholder Process Networks in a Highly Electrified Chemical Industry
目标:在高度电气化的化工行业中协调多利益相关者流程网络
  • 批准号:
    2215526
  • 财政年份:
    2022
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
Adaptive Robust Optimization with Endogenous Uncertainty and Active Learning in Smart Manufacturing
智能制造中具有内生不确定性和主动学习的自适应鲁棒优化
  • 批准号:
    2030296
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
CAREER: Optimization-Based Computational Discovery of Decision-Making Processes
职业:基于优化的决策过程计算发现
  • 批准号:
    2044077
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: Aerosols, Nitrogen Oxides, and Ozone at the Mt. Bachelor Observatory
合作研究:巴赫山天文台的气溶胶、氮氧化物和臭氧
  • 批准号:
    1829803
  • 财政年份:
    2018
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
CAREER:RNA conformational dynamics in the regulation of microRNA biogenesis
职业:RNA 构象动力学在 microRNA 生物发生调控中的作用
  • 批准号:
    1652676
  • 财政年份:
    2017
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Continuing Grant
SGER: Impacts of Air Pollution Controls on Primary and Secondary Aerosols during CAREBEIJING
SGER:CAREBEIJING 期间空气污染控制对一次和二次气溶胶的影响
  • 批准号:
    0840673
  • 财政年份:
    2008
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
Exploiting the giant electrocaloric effect
利用巨大的电热效应
  • 批准号:
    EP/E035043/1
  • 财政年份:
    2007
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Research Grant
Global Solutions of Semilinear Parabolic and Elliptic Equations
半线性抛物型和椭圆方程的全局解
  • 批准号:
    9801271
  • 财政年份:
    1998
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合先验知识和时空动态特征的小样本大豆叶面早期病害图像识别研究
  • 批准号:
    62301287
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多维数据融合的结肠癌肝转移精准诊断的特征识别
  • 批准号:
    62372141
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自贸试验区影响地区生态环境:机理逻辑、多元效应与个案识别
  • 批准号:
    72363023
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
  • 批准号:
    82341043
  • 批准年份:
    2023
  • 资助金额:
    110 万元
  • 项目类别:
    专项基金项目

相似海外基金

Identifying and exploiting therapeutic vulnerabilities of tumor-host interactions that drive bone-to-meninges breast cancer metastasis
识别和利用导致骨到脑膜乳腺癌转移的肿瘤与宿主相互作用的治疗脆弱性
  • 批准号:
    10826488
  • 财政年份:
    2023
  • 资助金额:
    $ 53.53万
  • 项目类别:
Identifying and exploiting the novel sources of genetic resistance for root diseases of pea
识别和开发豌豆根部病害遗传抗性的新来源
  • 批准号:
    2589571
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Studentship
Identifying novel tick attractants and repellents by exploiting their olfactory and eco-physiology
通过利用嗅觉和生态生理学来识别新型蜱虫引诱剂和驱虫剂
  • 批准号:
    10289312
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
Identifying novel tick attractants and repellents by exploiting their olfactory and eco-physiology
通过利用嗅觉和生态生理学来识别新型蜱虫引诱剂和驱虫剂
  • 批准号:
    10418801
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
Identifying and exploiting metabolic vulnerabilities in cancer using mass spectrometry and tracing approaches
使用质谱和追踪方法识别和利用癌症的代谢脆弱性
  • 批准号:
    10324039
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了