Bio-nanomanufacturing of Protein Therapeutics Using Membrane Microfluidics

使用膜微流体的蛋白质治疗药物的生物纳米制造

基本信息

  • 批准号:
    1728049
  • 负责人:
  • 金额:
    $ 37.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The market for therapeutic proteins is valued near $140 billion annually. Many of these therapeutics are glycoproteins, which require the addition of specific sugars, called 'glycans' at an exact position on the protein through a process called protein glycosylation. The glycan affects protein folding and function and ensures it retains its therapeutic potency. In nature, glycoproteins are produced through a series of sequential reactions inside a cell. Making therapeutic glycoproteins within cells is challenging for a variety of reasons, and extensive and costly purification steps are required to harvest the therapeutic material. With this award, a cell-free glycosylation network will be constructed in a microfluidic device that separates reactions in space and time, giving supreme flexibility in optimizing individual reactions and constructing glycans with high specificity. The benefits of this manufacturing paradigm to society are reducing the cost of these drugs and providing scientists an avenue to design and develop synthetic drug compounds that may or may not exist in nature to treat disease. The related education plan creates a hands-on bio-nanomanufacturing activity for a high school girls organized by the PIs and their student trainees, so that young women will understand the power of biotechnology and be inspired to pursue these career paths. Cell-free protein synthesis holds great promise for producing high-value, biotherapeutic nanomaterials without cell culture and benefitting from chemical manufacturing know-how. Here, raw materials and biological enzymes are mixed to produce biological products. Shortcomings of this approach are competing reactions, side products, and low yields. Cells avoid these shortcomings by localizing reactions within subcellular compartments and orchestrating the reaction sequences. The biocatalysts that give the final molecule its essential posttranslational features are compartmentalized in membranes. Handling enzymes outside of their native lipid environment can drastically reduce their activity. Thus, in vitro, sequential, bio-enzymatic reactions have never been achieved in a cell-free manner. The research objective is to mimic the elegant compartmentalization strategies used by cells in a microfluidic biomembrane device that organizes biological reactions in proper spatial and temporal sequence. These devices will generate authentically glycosylated proteins. Through assessment of nanostructure product architectures, this work will advance understanding of nanoscale phenomena and processes for nanomaterials manufacture and discovery. This cell-free device concept will enable facile optimization of glycosylated protein production, and provide a framework for understanding how experimental conditions affect product yield and quality that is broadly applicable to the bio-nanomanufacturing of virtually any posttranslationally-modified protein.
治疗蛋白的市场每年价值接近1400亿美元。这些治疗剂中的许多是糖蛋白,它需要添加特定的糖,即通过称为蛋白质糖基化的过程在蛋白质上的精确位置称为“聚糖”。聚糖会影响蛋白质折叠和功能,并确保其保留其治疗效力。在自然界中,糖蛋白是通过细胞内的一系列顺序反应产生的。由于各种原因,在细胞内制造治疗性糖蛋白是具有挑战性的,并且需要广泛且昂贵的纯化步骤来收集治疗材料。通过此奖项,将在微流体设备中构建一个无细胞的糖基化网络,该机构将空间和时间的反应分开,从而在优化单个反应和构造具有高特异性的聚糖方面具有至高的灵活性。这种制造范式对社会的好处是降低了这些药物的成本,并为科学家提供了设计和开发合成药物化合物的途径,这些途径在自然界中可能存在或可能不存在以治疗疾病。相关的教育计划为PIS及其学生学员组织的高中女生创造了动手的生物制造活动,因此年轻女性将了解生物技术的力量,并受到启发来追求这些职业道路。无细胞的蛋白质合成对生产没有细胞培养的高价值,生物治疗纳米材料并从化学制造知识中受益。在这里,将原材料和生物酶混合在一起以生产生物产品。这种方法的缺点是竞争反应,副产品和低收率。细胞通过将反应定位在亚细胞隔室中并策划反应序列来避免这些缺点。赋予最终分子的生物催化剂其基本的翻译后特征在膜中被划分。处理本机脂质环境外的酶可以大大减少其活性。因此,在体外,顺序,生物酶反应从未以无细胞的方式实现。研究的目标是模仿细胞在微流体生物膜装置中使用的优雅分隔策略,该策略在适当的空间和时间序列中组织生物反应。这些设备将生成真实的糖基化蛋白。通过评估纳米结构架构,这项工作将提高对纳米级现象的理解和纳米材料制造和发现的过程。这种无细胞的装置概念将使糖基化蛋白质的产生可轻松优化,并提供一个框架,以了解实验条件如何影响产品产量和质量,这些产品几乎适用于几乎任何翻译后修饰的蛋白质的生物 - 纳米制造。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic Glycobiology: Parts, Systems, and Applications
  • DOI:
    10.1021/acssynbio.0c00210
  • 发表时间:
    2020-07-17
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kightlinger, Weston Y.;Warfel, Katherine F.;Jewett, Michael C.
  • 通讯作者:
    Jewett, Michael C.
Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells
  • DOI:
    10.3389/fchem.2020.00645
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jaroentomeechai,Thapakorn;Taw,May N.;DeLisa,Matthew P.
  • 通讯作者:
    DeLisa,Matthew P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Daniel其他文献

Recreating the Biological Steps of Viral Infection on a Bioelectronic Platform to Profile Viral Variants of Concern
在生物电子平台上重现病毒感染的生物学步骤,以分析值得关注的病毒变体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongmou Chao;Ekaterina Selivanovitch;K. Kallitsis;Zixuan Lu;Ambika Pachaury;Róisín M. Owens;Susan Daniel
  • 通讯作者:
    Susan Daniel
Studying Fusion of Influenza to Supported Lipid Bilayers using Individual Virion Imaging Techniques
  • DOI:
    10.1016/j.bpj.2011.11.2332
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Deirdre A. Costello;Susan Daniel
  • 通讯作者:
    Susan Daniel
A reconstitutive platform for biophysical dissection of the Nipah virus fusion cascade
  • DOI:
    10.1016/j.bpj.2023.11.1517
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Sreetama Pal;Hector C. Aguilar;Susan Daniel
  • 通讯作者:
    Susan Daniel
Separating and Sorting Membrane Species using a Supported Bilayer Extractor Composed of Patterned Lipid Phases
  • DOI:
    10.1016/j.bpj.2011.11.181
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Mark J. Richards;Ling Chao;Susan Daniel
  • 通讯作者:
    Susan Daniel
Studying X31 Influenza Membrane Binding and Fusion using Stochastic Assays and Simulations
  • DOI:
    10.1016/j.bpj.2011.11.2738
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Donald Lee;Vikram Thapar;Deirdre Costello;Paulette Clancy;Gary Whittaker;Susan Daniel
  • 通讯作者:
    Susan Daniel

Susan Daniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Daniel', 18)}}的其他基金

NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
I-Corps: Cell-free Biosensors
I-Corps:无细胞生物传感器
  • 批准号:
    2229505
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
2020 SynCell Meeting
2020 SynCell 会议
  • 批准号:
    2024029
  • 财政年份:
    2020
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
RAPID: Revealing the intermolecular interactions between the SARS-CoV-2/COVID-19 fusion peptide and the host cell membrane that underlie its flexibility in host tropism
RAPID:揭示 SARS-CoV-2/COVID-19 融合肽与宿主细胞膜之间的分子间相互作用,这是其宿主向性灵活性的基础
  • 批准号:
    2027070
  • 财政年份:
    2020
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
EAGER: Plant membrane on-a-chip for the genome wide studies of plant transport processes
EAGER:芯片上的植物膜,用于植物运输过程的全基因组研究
  • 批准号:
    2016107
  • 财政年份:
    2020
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Uncovering the role of Golgi organization on function
合作研究:EAGER:揭示高尔基组织对功能的作用
  • 批准号:
    1935370
  • 财政年份:
    2019
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Microbial Fuel Cell Optimization through Digital Microfluidic Electrochemistry in Single-Bacterial Drops
合作研究:通过单细菌液滴中的数字微流体电化学优化微生物燃料电池
  • 批准号:
    1605787
  • 财政年份:
    2016
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
ISS: Unmasking contact-line mobility for Inertial Spreading using Drop Vibration and Coalescence
国际空间站:利用液滴振动和聚结揭示惯性传播的接触线移动性
  • 批准号:
    1637960
  • 财政年份:
    2016
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Viral coat protein arrays for rapid development and screening of anti-fusogenic antivirals against Ebolavirus
用于快速开发和筛选埃博拉病毒抗融合抗病毒药物的病毒外壳蛋白阵列
  • 批准号:
    1504846
  • 财政年份:
    2015
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
A Single Particle Imaging Approach for the Detection of Virus Phenotypes in a Mixture
用于检测混合物中病毒表型的单粒子成像方法
  • 批准号:
    1263701
  • 财政年份:
    2013
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向3D光场显示的衍射型光场调制器研究
  • 批准号:
    61905077
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
悬切结构的仿生制备及液体自发定向输运机制研究
  • 批准号:
    61805156
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于离焦扫描穆勒显微镜的纳米结构缺陷检测理论与方法研究
  • 批准号:
    51775217
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
跨尺度纳米操作机驱动机理及自动化微纳操作方法的研究
  • 批准号:
    61774107
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
纳米制造战略研究和学术交流
  • 批准号:
    91623000
  • 批准年份:
    2016
  • 资助金额:
    187.88 万元
  • 项目类别:
    重大研究计划

相似海外基金

Carbon Nanotube-Mediated Gene Transfer into Human T-cells for CAR-T HIV Therapy
碳纳米管介导的基因转移到人类 T 细胞中用于 CAR-T HIV 治疗
  • 批准号:
    10601451
  • 财政年份:
    2023
  • 资助金额:
    $ 37.44万
  • 项目类别:
Enhanced CRISPR gene editing in pluripotent stem cells using carbon nanotube arrays
使用碳纳米管阵列增强多能干细胞中的 CRISPR 基因编辑
  • 批准号:
    10698269
  • 财政年份:
    2023
  • 资助金额:
    $ 37.44万
  • 项目类别:
Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators
光电穿孔:通过纳米级光放大电压发生器传递生物大分子
  • 批准号:
    10538761
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators
光电穿孔:通过纳米级光放大电压发生器传递生物大分子
  • 批准号:
    10688265
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Nanomanufacturing of Protein Macromolecular Frameworks Through an Integrated Bioengineering and Computational Approach
通过综合生物工程和计算方法纳米制造蛋白质大分子框架
  • 批准号:
    1922883
  • 财政年份:
    2018
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了