Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators
光电穿孔:通过纳米级光放大电压发生器传递生物大分子
基本信息
- 批准号:10538761
- 负责人:
- 金额:$ 21.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:BiologicalBioreactorsBiotechnologyCaliberCell Culture TechniquesCell LineCell SurvivalCell TherapyCell membraneCellsChemicalsColon CarcinomaComplexCulture MediaCytosolDNADevicesDextransDiffusionDiseaseElectronicsElectroporationElementsFillerFutureGenerationsGenesGoalsHCT116 CellsIn VitroLengthLightMeasurementMessenger RNAMethodsModelingMolecular WeightNanomanufacturingNucleic AcidsOutcomeOxidesPatientsProcessProductionPropertyProteinsReagentResearchRouteSeriesStructureTechnologyTestingTherapeuticTimeTissuesWorkbasebiological researchbiomacromoleculechemical propertychimeric antigen receptor T cellsclinical applicationcrystallinitydensityelectric fieldfluorexonhuman diseasein vivoinnovationmacromoleculenanoparticlenanoscalenanowirephysical propertypre-clinicalsuccesstargeted deliverytherapeutic genetherapeutic proteintoolvoltage
项目摘要
ABSTRACT
Controlled and efficient intracellular delivery of biomacromolecules, such as proteins and nucleic acids, is a
significant challenge in realizing their potential as therapeutics and critical reagents for manufacture of cell and
cell product therapies, such as CAR-T cells. Existing biological, chemical, and physical delivery methods all have
limitations that preclude their use in in vivo or large scale applications. Photoelectroporation (PEP) is proposed
to overcome this challenge. Single-crystalline Si nanowires (~50 nm diameter, 10 µm long) containing
photodiodes are the “photoelectroporators” that can be dispersed amongst cells and excited by near-infrared
(NIR) light to generate a voltage across nanowires with calculated electric fields and current densities similar to
those achieved in traditional and microscale electroporation, which are sufficient to drive cell membrane pore
formation and enable diffusion of macromolecules into the cytosol. NIR light can penetrate tissue or bioreactors
in static or flow configurations, is non-toxic and non-heating, and has excellent spatial and temporal control. PEP
technology could provide distributed or locally targeted delivery, in large or small volumes, even in flow, and
would offer significant benefits to patients in need of biologic, cellular, or cell derived therapies. The Geode
process has been developed to produce ~105 times more material than conventional methods, finally making it
feasible not only to evaluate the delivery ability of PEP but to apply it to in vivo or cell processing uses in the
future. The goal of this proposal is to produce photoelectroporators with different numbers of diodes and coatings
and evaluate their PEP capacity in vitro to deliver model and functional biomacromolecules to cells without
reducing viability. Two aims have been set to meet this goal. (1) Synthesize Si nanowires with different numbers
of pn diodes programmed along their length and with different coatings and characterize their physical, chemical
and photo properties. (2) Demonstrate delivery of biomacromolecules to cells via PEP, which includes identifying
the nanowire properties and PEP parameters with the greatest efficiency and cell viability as well as
understanding how cells near and within a distributed field are electroporated. Functional protein, mRNA and
DNA cargo will be delivered to both adherent and non-adherent cells. These results will establish PEP as a viable
method to transfect viable cells with large, functional cargoes that uses light and distributed nanowires to
overcome the constraints of other methods and enable future preclinical work, including in vivo PEP and liter-
scale PEP with disease relevant cargoes and target cells.
抽象的
生物大分子(例如蛋白质和核酸)的受控且有效的细胞内递送是一种
实现其作为治疗剂和细胞制造关键试剂的潜力是一项重大挑战
细胞产品疗法,例如CAR-T细胞,现有的生物、化学和物理递送方法都有。
提出光电穿孔(PEP)
克服这一挑战的单晶硅纳米线(直径约 50 nm,长 10 µm)。
光电二极管是可以分散在细胞中并被近红外激发的“光电穿孔器”
(NIR) 光在纳米线上产生电压,计算出的电场和电流密度类似于
在传统和微型电穿孔中实现的那些足以驱动细胞膜孔
形成并使大分子扩散到细胞质中,近红外光可以穿透组织或生物反应器。
在静态或流动配置中,无毒且不加热,并且具有出色的空间和时间控制。
技术可以提供分布式或局部有针对性的交付,无论是大批量还是小批量,甚至是流动的,并且
将为需要生物、细胞或细胞衍生疗法的患者带来显着的益处。
已开发出比传统方法多生产约 105 倍材料的工艺,最终使其成为
不仅可以评估 PEP 的递送能力,还可以将其应用于体内或细胞处理用途。
该提案的目标是生产具有不同数量的二极管和涂层的光电穿孔器。
并评估其 PEP 在体外将模型和功能性生物大分子递送至细胞的能力,而无需
为了实现这一目标,我们设定了两个目标(1)合成不同数量的硅纳米线。
沿其长度和不同涂层进行编程的 pn 二极管,并表征其物理、化学特性
(2) 展示通过 PEP 将生物大分子递送至细胞,其中包括识别
具有最高效率和细胞活力的纳米线特性和 PEP 参数以及
了解分布场附近和内的细胞如何电穿孔功能性蛋白质、mRNA 和
DNA 货物将被递送至贴壁细胞和非贴壁细胞。这些结果将确立 PEP 的可行性。
用大型功能性货物转染活细胞的方法,使用光和分布式纳米线
克服其他方法的限制并实现未来的临床前工作,包括体内 PEP 和 Lite-
使用疾病相关货物和靶细胞扩展 PEP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie Champion其他文献
Julie Champion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie Champion', 18)}}的其他基金
2023 Preclinical Form and Formulation for Drug Discovery Gordon Research Conference and Gordon Research Seminar
2023年药物发现临床前形式和制剂戈登研究会议和戈登研究研讨会
- 批准号:
10605746 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators
光电穿孔:通过纳米级光放大电压发生器传递生物大分子
- 批准号:
10688265 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Engineered Protein Nanocarriers for Intracellular Antibody Delivery
用于细胞内抗体递送的工程蛋白质纳米载体
- 批准号:
9387821 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Engineering bacterially derived immunomodulants:a novel IBD therapeutic approach
工程细菌衍生的免疫调节剂:一种新的 IBD 治疗方法
- 批准号:
8545388 - 财政年份:2012
- 资助金额:
$ 21.56万 - 项目类别:
Laterally Mobile Ligands: Cellular Response to Dynamic Surfaces
横向移动配体:细胞对动态表面的响应
- 批准号:
7487230 - 财政年份:2008
- 资助金额:
$ 21.56万 - 项目类别:
Laterally Mobile Ligands: Cellular Response to Dynamic Surfaces
横向移动配体:细胞对动态表面的响应
- 批准号:
7586105 - 财政年份:2008
- 资助金额:
$ 21.56万 - 项目类别:
相似国自然基金
厌氧膜生物反应器中病毒的界面行为与灭活机制
- 批准号:52311540019
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
厌氧电膜生物反应器降解类固醇雌激素的技术原理与调控方法
- 批准号:52300064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市污水DOM正渗透膜生物反应器不可逆膜污染界面过程及其机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
厌氧膜生物反应器耦联厌氧氨氧化用于废水处理的技术原理及调控方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Multi-Tissue MAFLD Chip for Mechanism-Based Drug Testing
用于基于机制的药物测试的多组织 MAFLD 芯片
- 批准号:
10484325 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Preclinical Development of a Novel eNAMPT-Neutralizing mAb for Pulmonary Hypertension
治疗肺动脉高压的新型 eNAMPT 中和单克隆抗体的临床前开发
- 批准号:
10489982 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators
光电穿孔:通过纳米级光放大电压发生器传递生物大分子
- 批准号:
10688265 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Intensified, High-Rate Reductive Immobilization of Hexavalent Chromium
六价铬的强化、高速率还原固定化
- 批准号:
10707077 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Targeting the eNAMPT/TLR4 pathway to reduce Inflammatory Bowel Disease severity
靶向 eNAMPT/TLR4 通路以降低炎症性肠病的严重程度
- 批准号:
10602227 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别: