EAGER: Plant membrane on-a-chip for the genome wide studies of plant transport processes

EAGER:芯片上的植物膜,用于植物运输过程的全基因组研究

基本信息

  • 批准号:
    2016107
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Plant cells are surrounded by the plasma membrane that forms cellular boundaries and helps to maintain chemically distinct environments within and outside the cell. Membrane-based compartmentation allows different processes to occur simultaneously in different parts of the cell and in accordance with plant needs. These cellular processes ensure plant growth, development and response to environmental stresses and largely depend on ions and organic molecules redistribution across membranes. Most nutrients and metabolites cannot freely cross the membrane, so specific proteins, known as channels, pumps, and cotransporters, are embedded in plant membranes for this purpose. As scientists strive to understand how plants adapt to extreme weather conditions, pathogen pressures, and pollution, uncovering how these transport systems operate is important for devising sustainable approaches for improving crop yield and promoting flourishing ecosystems. In this project, a device is proposed that can take samples of plant cell membranes with embedded transport systems to test their response and properties to various conditions of interest. The device consists of a transparent, conductive plastic surface that measures the material that crosses the plant cell membrane in a highly controlled manner, allowing scientists to probe, and later connect, the responses of transport systems with the plant from which it was derived and the conditions under which that plant was grown. This project will also foster high school student excitement about career choices in agriculture and life science industries that involve biotechnology and applications in plants, food, and farming through Cornell’s WOMEN event.Monitoring the flux of solutes and ions across plant cell membranes through ion channels and transporters embedded within them, is a significant challenge today, but is fundamental for assigning function to unknown transporter genes, tackling transporter substrate specificities and mode of regulation, linking metabolic pathways to cellular compartments, plant growth and development, and bridging the genotype to phenotype gap. Today's technologies are inadequate for a number of reasons, including low throughput and lack of sensitivity, especially for transporters, which have fluxes several orders of magnitude lower than ion channels. Here, a new technology is proposed that combines planar plant membranes, microfluidic environmental control, and a transparent, electrically conducting polymer, comprising a “plant membrane bioelectronic device.” This device is capable of dual-mode (optical or electrical) measurement of transporter function. This new kind of sensor device can be highly multiplexed for collection of large data sets on plant transporter systems in a way that has not been possible before. Such large data sets feed into big data science approaches for enabling discoveries and breakthroughs in our understanding of how plants adapt to genetic perturbations, extreme weather conditions, pathogen pressures, and other critical aspects important for improving crop yield and promoting flourishing ecosystems. This project will also foster the next generation of high school students becoming excited about career choices in agriculture and life science industries that involve biotechnology and applications in plants, food, and farming through ongoing outreach activities that engage K-12 girls and their parents through Cornell’s WOMEN event.This award was co-funded by the Plant Genome Research Program and the Physiological Mechanisms and Biomechanics Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物细胞被质膜包围,质膜形成细胞边界,有助于维持细胞内外化学上不同的环境,允许不同的过程在细胞的不同部分同时发生,并根据植物的需要进行。植物的生长、发育和对环境胁迫的反应很大程度上取决于离子和有机分子跨膜的重新分配,大多数营养物质和代谢物不能自由穿过膜,因此特定的蛋白质(称为通道、泵和协同转运蛋白)嵌入植物膜中。为此,科学家们努力了解植物如何适应极端天气条件、病原体压力和污染,揭示这些运输系统的运作方式对于设计提高作物产量和促进生态系统繁荣的可持续方法非常重要。该装置由透明导电塑料表面组成,可在高度受控的情况下测量穿过植物细胞膜的材料。方式,让科学家们能够探索,然后该项目还将激发高中生对涉及生物技术和植物应用的农业和生命科学行业职业选择的兴趣。通过康奈尔大学的 WOMEN 活动,监测植物细胞膜上溶质和离子的通量,通过离子通道和嵌入植物细胞膜的转运蛋白,是当今的一项重大挑战,但对于将功能分配给未知的转运蛋白基因、破坏的转运蛋白底物至关重要调节的特异性和模式,将代谢途径与细胞区室、植物生长和发育联系起来,以及弥合基因型与表型的差距。当今的技术由于多种原因而不足,包括通量低和缺乏敏感性,特别是对于转运蛋白而言。通量比离子通道低几个数量级。这里提出了一种新技术,该技术结合了平面植物膜、微流体环境控制和透明导电聚合物,包括“植物膜生物电子装置”。这种新型传感器设备可以高度多路复用,以以前不可能的方式收集植物运输系统上的大型数据集。大数据科学方法使我们能够在理解植物如何适应遗传扰动、极端天气条件、病原体压力以及对提高作物产量和促进繁荣生态系统至关重要的其他关键方面取得发现和突破。该项目还将培育下一代。高中生兴奋地成为通过持续的外展活动,通过康奈尔大学的 WOMEN 活动吸引 K-12 女孩及其父母参与农业和生命科学行业的职业选择,涉及植物、食品和农业中的生物技术和应用。该奖项由植物基因组研究计划共同资助该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Daniel其他文献

Recreating the Biological Steps of Viral Infection on a Bioelectronic Platform to Profile Viral Variants of Concern
在生物电子平台上重现病毒感染的生物学步骤,以分析值得关注的病毒变体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongmou Chao;Ekaterina Selivanovitch;K. Kallitsis;Zixuan Lu;Ambika Pachaury;Róisín M. Owens;Susan Daniel
  • 通讯作者:
    Susan Daniel

Susan Daniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Daniel', 18)}}的其他基金

NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Cell-free Biosensors
I-Corps:无细胞生物传感器
  • 批准号:
    2229505
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
2020 SynCell Meeting
2020 SynCell 会议
  • 批准号:
    2024029
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Revealing the intermolecular interactions between the SARS-CoV-2/COVID-19 fusion peptide and the host cell membrane that underlie its flexibility in host tropism
RAPID:揭示 SARS-CoV-2/COVID-19 融合肽与宿主细胞膜之间的分子间相互作用,这是其宿主向性灵活性的基础
  • 批准号:
    2027070
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Uncovering the role of Golgi organization on function
合作研究:EAGER:揭示高尔基组织对功能的作用
  • 批准号:
    1935370
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bio-nanomanufacturing of Protein Therapeutics Using Membrane Microfluidics
使用膜微流体的蛋白质治疗药物的生物纳米制造
  • 批准号:
    1728049
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Microbial Fuel Cell Optimization through Digital Microfluidic Electrochemistry in Single-Bacterial Drops
合作研究:通过单细菌液滴中的数字微流体电化学优化微生物燃料电池
  • 批准号:
    1605787
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ISS: Unmasking contact-line mobility for Inertial Spreading using Drop Vibration and Coalescence
国际空间站:利用液滴振动和聚结揭示惯性传播的接触线移动性
  • 批准号:
    1637960
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Viral coat protein arrays for rapid development and screening of anti-fusogenic antivirals against Ebolavirus
用于快速开发和筛选埃博拉病毒抗融合抗病毒药物的病毒外壳蛋白阵列
  • 批准号:
    1504846
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Single Particle Imaging Approach for the Detection of Virus Phenotypes in a Mixture
用于检测混合物中病毒表型的单粒子成像方法
  • 批准号:
    1263701
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

植物乳杆菌Y12胞外多糖调控环二鸟苷酸介导自身生物被膜形成机制研究
  • 批准号:
    32302032
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型金属有机框架多孔碳膜用于植物-微生物挥发性交互因子的富集研究
  • 批准号:
    22374023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
核糖体蛋白激酶S6K2调控植物缺磷响应和膜脂重塑的机理研究
  • 批准号:
    32360067
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
植物启发的多功能水凝胶负载膜仿生纳米基因药物修复椎间盘退变的作用及机制研究
  • 批准号:
    82302679
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
典型PFASs在植物附着生物膜上的微界面行为及毒性机制研究
  • 批准号:
    42307116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

植物葉緑体と藍藻のチラコイド膜プロトン輸送体の超硫黄修飾を介した光合成最適化機構
超硫修饰植物叶绿体和蓝绿藻类囊体膜质子转运蛋白介导的光合作用优化机制
  • 批准号:
    24K08709
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
植物の細胞膜H+-ATPase活性制御機構に関わる新規因子の探索と機能解析
植物细胞膜H+-ATP酶活性调控机制新因子的搜寻及功能分析
  • 批准号:
    24K09501
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
植物にユニークな膜交通制御機構の全容解明と機能性植物作出に向けた展開
彻底阐明植物特有的膜交通控制机制,开发功能性植物
  • 批准号:
    24KJ1122
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
植物エキソソーム(EVs)による角膜上皮細胞の損傷治癒のメカニズムの解明
植物外泌体(EV)阐明角膜上皮细胞损伤愈合机制
  • 批准号:
    24K09362
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変動光下の植物光合成を支える「遠赤色光による光合成膜の膜電位調節機構」の解明
阐明波动光下支持植物光合作用的“远红光光合膜膜电位调节机制”
  • 批准号:
    24K09493
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了