III: Medium: Collaborative Research: Composing Interactive Data Visualizations

III:媒介:协作研究:构建交互式数据可视化

基本信息

  • 批准号:
    1562182
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Data is a growing part of our culture, and visualizations of data are key to helping people understand and discuss the issues described by the data. Charts and graphs used to be associated with classrooms and laboratories; today they appear in mainstream coverage of weather, politics, sports, and other popular topics. This has happened in part because of advances in the technology for composing visualizations: it's much easier today to generate custom charts, thanks to a revolution in toolkits for data visualization driven by the academic research community. But it is still difficult to author *interactive* visualizations that allow users to manipulate charts. Research shows that interactivity helps people better understand and explore data visualizations. A number of interactive visualizations have appeared in popular online newspapers like the New York Times in recent years. Unfortunately, current interactive visualization toolkits are very technical and difficult to use, even for experts. The collaborative interdisciplinary team involving researchers and their students at the University of California-Berkeley (IIS-1564351), Columbia University (IIS-1564049) and University of Washington (IIS-1562182) works on making it far easier to build interactive visualizations. The goal of this project is to develop an interactive visualization design framework that will substantially simplify the task of specifying interaction in visual exploration of data. This will broaden the population of users and organizations who can craft rich, interactive visualizations and understand the presented information.The project explores a declarative approach to specifying interactive data visualizations called "Logical Interaction" (LI), realized in a new language called LIL. As a high level goal, LIL is intended to significantly simplify the specification of interactive visualizations, enabling more widespread use of interactive features in data visualizations. The dynamics of interaction introduce unique technical challenges and opportunities, including debugging and testing of asynchronous interaction handlers, and design tradeoffs between scaling up data and maintaining interface responsiveness. The hypothesis of the research is that LI can make these challenges much more tractable, and that LIL can engage visualization designers in widespread, creative development of new interactive visualizations. The research project includes exploring the fundamental modeling and language design issues in this domain, to develop techniques for composing and analyzing interaction code, and to deliver a prototype language, runtime, and analysis suite that demonstrates the benefits of our ideas. Results of the work will be embodied in a language runtime for LI, which will be freely available as open source. The project will evaluate the effectiveness of LI in terms of its interactivity and scale, the range of interactive visualizations it naturally supports, and the ability for users of varying skills to learn and use it. The researchers will also experiment with LI in university courses on Big Data and Data Science, and share the curricula publicly along with the software. Project web site (http://nsfdeclarativevis.github.io/NSFDeclarativeVis/) will provide access to project software, datasets and educational material, and research results will be published in the scientific literature.
数据是我们文化中不断增长的一部分,数据可视化是帮助人们理解和讨论数据描述的问题的关键。图表和图表曾经与教室和实验室相关;如今,它们出现在天气、政治、体育和其他热门话题的主流报道中。发生这种情况的部分原因是可视化技术的进步:由于学术研究社区推动的数据可视化工具包的革命,如今生成自定义图表变得更加容易。但创作允许用户操作图表的“交互式”可视化仍然很困难。研究表明,交互性可以帮助人们更好地理解和探索数据可视化。近年来,许多交互式可视化出现在《纽约时报》等流行的在线报纸上。不幸的是,当前的交互式可视化工具包技术性很强,即使对于专家来说也很难使用。由加州大学伯克利分校 (IIS-1564351)、哥伦比亚大学 (IIS-1564049) 和华盛顿大学 (IIS-1562182) 的研究人员及其学生组成的跨学科协作团队致力于让构建交互式可视化变得更加容易。该项目的目标是开发一个交互式可视化设计框架,该框架将大大简化在数据可视化探索中指定交互的任务。这将扩大能够制作丰富的交互式可视化并理解所呈现信息的用户和组织的数量。该项目探索了一种声明性方法来指定交互式数据可视化,称为“逻辑交互”(LI),并以一种称为 LIL 的新语言实现。作为一个高级目标,LIL 旨在显着简化交互式可视化的规范,从而使交互式功能在数据可视化中得到更广泛的使用。交互的动态带来了独特的技术挑战和机遇,包括异步交互处理程序的调试和测试,以及扩展数据和保持界面响应能力之间的设计权衡。该研究的假设是,LI 可以使这些挑战变得更容易处理,并且 LIL 可以让可视化设计师参与新的交互式可视化的广泛、创造性的开发。该研究项目包括探索该领域的基本建模和语言设计问题,开发编写和分析交互代码的技术,并提供原型语言、运行时和分析套件来展示我们的想法的优点。工作成果将体现在 LI 的语言运行时中,该运行时将作为开源免费提供。该项目将评估 LI 的有效性,包括其交互性和规模、它自然支持的交互式可视化范围以及不同技能的用户学习和使用它的能力。研究人员还将在大学大数据和数据科学课程中对 LI 进行实验,并与软件一起公开分享课程。项目网站(http://nsfdeclarativevis.github.io/NSFDeclarativeVis/)将提供项目软件、数据集和教育材料的访问,研究结果将在科学文献中发表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Heer其他文献

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
部分满足哲学博士学位的要求
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeffrey Heer;Christopher Manning;Daniel McFarl
  • 通讯作者:
    Daniel McFarl
All Friends are Not Equal : Using Weights in Social Graphs to Improve Search
所有朋友并不平等:使用社交图中的权重来改进搜索
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sudheendra Hangal;Diana L. MacLean;M. Lam;Jeffrey Heer
  • 通讯作者:
    Jeffrey Heer
Black Hat Visualization
黑帽可视化
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Correll;Jeffrey Heer
  • 通讯作者:
    Jeffrey Heer
How Do Data Analysts Respond to AI Assistance? A Wizard-of-Oz Study
数据分析师如何应对人工智能的帮助?
  • DOI:
    10.48550/arxiv.2309.10108
  • 发表时间:
    2023-09-18
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Ken Gu;Madeleine Grunde;Andrew M. McNutt;Jeffrey Heer;Tim Althoff
  • 通讯作者:
    Tim Althoff
Proactive wrangling: mixed-initiative end-user programming of data transformation scripts
主动争论:数据转换脚本的混合主动最终用户编程

Jeffrey Heer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Heer', 18)}}的其他基金

III: Large: Collaborative Research: Analysis Engineering for Robust End-to-End Data Science
III:大型:协作研究:稳健的端到端数据科学的分析工程
  • 批准号:
    1901386
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Representing and Learning Visualization Design Knowledge
CHS:小型:协作研究:表示和学习可视化设计知识
  • 批准号:
    1907399
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
DC: Medium: Collaborative Research: Data Intensive Computing: Scalable, Social Data Analysis
DC:媒介:协作研究:数据密集型计算:可扩展、社交数据分析
  • 批准号:
    1355723
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
DC: Medium: Collaborative Research: Data Intensive Computing: Scalable, Social Data Analysis
DC:媒介:协作研究:数据密集型计算:可扩展、社交数据分析
  • 批准号:
    0964173
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
HCC: Small: Graphical Perception Revisited: Developing and Validating Design Guidelines for Data Visualization
HCC:小:重新审视图形感知:开发和验证数据可视化设计指南
  • 批准号:
    1017745
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2402311
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310114
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310260
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了