RAPID: Revealing the intermolecular interactions between the SARS-CoV-2/COVID-19 fusion peptide and the host cell membrane that underlie its flexibility in host tropism

RAPID:揭示 SARS-CoV-2/COVID-19 融合肽与宿主细胞膜之间的分子间相互作用,这是其宿主向性灵活性的基础

基本信息

  • 批准号:
    2027070
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Coronavirus is a membrane-enveloped package decorated with “spikes” that protrude from its surface. These spikes interact with the host cell to initiate infection of that cell. The ability of coronavirus to spread to other cells depends on how well the spike interacts with its target host membrane. The part of the spike that controls this interaction is called the “fusion peptide” and its job is to insert into the host membrane to initiate the delivery its genetic cargo into the cell. However, the specifics of how the fusion peptide interacts with the membrane is still not known. In this project, various interactions between the fusion peptide with membrane surfaces that mimic different kinds of host cells will be studied. This information will provide insight into the characteristics of both the fusion peptide and the host cell that promotes their interaction, and ultimately, infection and viral transmission to new hosts. With a better understanding of the science behind this critical interaction for virus adaptation to new hosts, we will be better informed about how this virus spreads and ultimately equipped to develop strategies to stop it. This fundamental information has the potential to enable fresh approaches to the design of antiviral drugs that target the fusion peptide. Given that the fusion peptide is highly conserved across the coronavirus family, these studies will be directly applicable to all coronaviruses, including the coronavirus that causes COVID-19.A key determinant of the ability of coronavirus to spread is how it interacts with its target host membrane. For coronavirus, entry into a host cell is mediated by a single glycoprotein protruding from its membrane envelope, called spike (S). Within S, the region that directly interacts with the membrane is called the fusion peptide, FP. It is the physico-chemical interactions of the FP with the host membrane that anchors it, thus enabling the necessary deformations of the membrane that lead to delivery of the viral genome into the cell. Thus, understanding FP interactions at the most fundamental level will facilitate the development of strategies to limit those interactions to stop the spread of infections. This information is expected to be helpful in predicting the characteristics of emerging strains that could post a threat to humans in the future. The objective of this project is to measure and identify the specific intermolecular interactions responsible for insertion of FP into membranes. Specifically, this project will: 1) elucidate the factors that control hydrophobic interactions of FP using single molecule force measurements with atomic force microscopy and models of biological membranes, and 2) characterize the structure-function relationship of the FP using circular dichroism and isothermal calorimetry to correlate specific interactions with amino acid sequence and host surface properties. The intellectual merit of this project is discovering how changes in host membrane chemistry or amino acid sequence of the FP modulates the hydrophobic interaction and ultimately influences activity critical to the spread of infection. The broader impact of this project is providing information that will enable fresh approaches to the design of antiviral drugs, as well as to identify basic design rules that inform how the FP promotes the interaction with membranes of specific chemistry to predict host susceptibility to infection. Given that the FP is highly conserved across the CoV family, these studies will be directly applicable to all CoVs, including those yet to emerge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冠状病毒是一种膜包膜,表面有突出的“刺突”,这些刺突与宿主细胞相互作用,引发该细胞的感染。冠状病毒传播到其他细胞的能力取决于刺突与其相互作用的程度。控制这种相互作用的刺突部分称为“融合肽”,其作用是插入宿主膜以启动将其基因货物递送到细胞中。与膜相互作用在这个项目中,将研究融合肽与模拟不同种类宿主细胞的膜表面之间的各种相互作用。这些信息将提供对融合肽和促进它们相互作用的宿主细胞的特征的深入了解。 ,以及最终,感染和病毒传播到新宿主。随着对病毒适应新宿主的这种关键相互作用背后的科学有了更好的了解,我们将更好地了解这种病毒是如何传播的,并最终有能力制定阻止它的策略。这一基本信息有可能为解决这一问题提供新的方法。设计针对融合肽的抗病毒药物。鉴于融合肽在冠状病毒家族中高度保守,这些研究将直接适用于所有冠状病毒,包括引起COVID-19的冠状病毒。冠状病毒能力的关键决定因素对于冠状病毒来说,进入宿主细胞是由从其膜包膜突出的单个糖蛋白(称为刺突(S))介导的,在 S 内,直接与膜相互作用的区域是。被称为融合肽,FP。正是 FP 与宿主膜的物理化学相互作用将其固定,从而使膜发生必要的变形,从而将病毒基因组递送到细胞中。最基本的层面将有助于制定限制这些相互作用以阻止感染传播的策略,这一信息预计将有助于预测未来可能对人类构成威胁的新菌株的特征。项目的目的是测量和识别该项目将:1)利用原子力显微镜和生物膜模型的单分子力测量来阐明控制 FP 疏水相互作用的因素,以及 2)表征结构 -使用圆二色性和等温量热法将 FP 的功能关系与氨基酸序列和宿主表面特性关联起来,该项目的智力价值是发现宿主膜化学或氨基酸的变化。 FP 的序列调节疏水相互作用并最终影响对感染传播至关重要的活性,该项目的更广泛影响是提供信息,使新的抗病毒药物设计方法成为可能,并确定可提供信息的基本设计规则。 FP 如何促进与特定化学膜的相互作用,以预测宿主对感染的易感性。鉴于 FP 在 CoV 家族中高度保守,这些研究将直接适用于所有 CoV,包括那些尚未出现的 CoV。该奖项反映了这一点。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Daniel其他文献

Recreating the Biological Steps of Viral Infection on a Bioelectronic Platform to Profile Viral Variants of Concern
在生物电子平台上重现病毒感染的生物学步骤,以分析值得关注的病毒变体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongmou Chao;Ekaterina Selivanovitch;K. Kallitsis;Zixuan Lu;Ambika Pachaury;Róisín M. Owens;Susan Daniel
  • 通讯作者:
    Susan Daniel

Susan Daniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Daniel', 18)}}的其他基金

NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
I-Corps: Cell-free Biosensors
I-Corps:无细胞生物传感器
  • 批准号:
    2229505
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
2020 SynCell Meeting
2020 SynCell 会议
  • 批准号:
    2024029
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Plant membrane on-a-chip for the genome wide studies of plant transport processes
EAGER:芯片上的植物膜,用于植物运输过程的全基因组研究
  • 批准号:
    2016107
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Uncovering the role of Golgi organization on function
合作研究:EAGER:揭示高尔基组织对功能的作用
  • 批准号:
    1935370
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Bio-nanomanufacturing of Protein Therapeutics Using Membrane Microfluidics
使用膜微流体的蛋白质治疗药物的生物纳米制造
  • 批准号:
    1728049
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Microbial Fuel Cell Optimization through Digital Microfluidic Electrochemistry in Single-Bacterial Drops
合作研究:通过单细菌液滴中的数字微流体电化学优化微生物燃料电池
  • 批准号:
    1605787
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ISS: Unmasking contact-line mobility for Inertial Spreading using Drop Vibration and Coalescence
国际空间站:利用液滴振动和聚结揭示惯性传播的接触线移动性
  • 批准号:
    1637960
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Viral coat protein arrays for rapid development and screening of anti-fusogenic antivirals against Ebolavirus
用于快速开发和筛选埃博拉病毒抗融合抗病毒药物的病毒外壳蛋白阵列
  • 批准号:
    1504846
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
A Single Particle Imaging Approach for the Detection of Virus Phenotypes in a Mixture
用于检测混合物中病毒表型的单粒子成像方法
  • 批准号:
    1263701
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

在全基因组水平揭示人工合成八倍体小黑麦基因组变异规律与分子机制的研究
  • 批准号:
    32372132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
单细胞拟时序分析揭示结直肠癌异时性肝转移的早期血清标志物谱及转移定植机制研究
  • 批准号:
    82372336
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于跨物种多组学揭示骨骼肌衰老过程中的转录后调控缺陷和相关功能基因的研究
  • 批准号:
    32301238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型分子功能探针揭示吞噬作用中小GTP酶活性调控的时空动力学
  • 批准号:
    32371519
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电机泵系统非解耦磁流热协同机理揭示及其一体化
  • 批准号:
    52377060
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
  • 批准号:
    MR/X035166/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Revealing the regulatory mechanisms of endosomal cargo transporters
揭示内体货物转运蛋白的调控机制
  • 批准号:
    2337495
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了