RAPID: Revealing the intermolecular interactions between the SARS-CoV-2/COVID-19 fusion peptide and the host cell membrane that underlie its flexibility in host tropism

RAPID:揭示 SARS-CoV-2/COVID-19 融合肽与宿主细胞膜之间的分子间相互作用,这是其宿主向性灵活性的基础

基本信息

  • 批准号:
    2027070
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Coronavirus is a membrane-enveloped package decorated with “spikes” that protrude from its surface. These spikes interact with the host cell to initiate infection of that cell. The ability of coronavirus to spread to other cells depends on how well the spike interacts with its target host membrane. The part of the spike that controls this interaction is called the “fusion peptide” and its job is to insert into the host membrane to initiate the delivery its genetic cargo into the cell. However, the specifics of how the fusion peptide interacts with the membrane is still not known. In this project, various interactions between the fusion peptide with membrane surfaces that mimic different kinds of host cells will be studied. This information will provide insight into the characteristics of both the fusion peptide and the host cell that promotes their interaction, and ultimately, infection and viral transmission to new hosts. With a better understanding of the science behind this critical interaction for virus adaptation to new hosts, we will be better informed about how this virus spreads and ultimately equipped to develop strategies to stop it. This fundamental information has the potential to enable fresh approaches to the design of antiviral drugs that target the fusion peptide. Given that the fusion peptide is highly conserved across the coronavirus family, these studies will be directly applicable to all coronaviruses, including the coronavirus that causes COVID-19.A key determinant of the ability of coronavirus to spread is how it interacts with its target host membrane. For coronavirus, entry into a host cell is mediated by a single glycoprotein protruding from its membrane envelope, called spike (S). Within S, the region that directly interacts with the membrane is called the fusion peptide, FP. It is the physico-chemical interactions of the FP with the host membrane that anchors it, thus enabling the necessary deformations of the membrane that lead to delivery of the viral genome into the cell. Thus, understanding FP interactions at the most fundamental level will facilitate the development of strategies to limit those interactions to stop the spread of infections. This information is expected to be helpful in predicting the characteristics of emerging strains that could post a threat to humans in the future. The objective of this project is to measure and identify the specific intermolecular interactions responsible for insertion of FP into membranes. Specifically, this project will: 1) elucidate the factors that control hydrophobic interactions of FP using single molecule force measurements with atomic force microscopy and models of biological membranes, and 2) characterize the structure-function relationship of the FP using circular dichroism and isothermal calorimetry to correlate specific interactions with amino acid sequence and host surface properties. The intellectual merit of this project is discovering how changes in host membrane chemistry or amino acid sequence of the FP modulates the hydrophobic interaction and ultimately influences activity critical to the spread of infection. The broader impact of this project is providing information that will enable fresh approaches to the design of antiviral drugs, as well as to identify basic design rules that inform how the FP promotes the interaction with membranes of specific chemistry to predict host susceptibility to infection. Given that the FP is highly conserved across the CoV family, these studies will be directly applicable to all CoVs, including those yet to emerge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冠状病毒是一种由膜开发的包装,上面装饰有“尖峰”,从其表面伸出。这些尖峰与宿主细胞相互作用以引发该细胞的感染。冠状病毒扩散到其他细胞的能力取决于峰值与靶宿主膜的相互作用。控制这种相互作用的尖峰部分称为“融合肽”,其作业是将其插入宿主膜中以将其遗传货物传递到细胞中。但是,融合肽如何与膜相互作用的细节尚不清楚。在这个项目中,融合肽与膜表面之间的各种相互作用,模仿不同种类的宿主细胞将被研究。该信息将洞悉融合肽和促进其相互作用的宿主细胞的特征,并最终向新宿主传播感染和病毒传播。有了更好地了解这种对新宿主病毒适应新宿主的关键互动背后的科学,我们将更好地了解这种病毒如何传播,并最终等同于制定阻止它的策略。这些基本信息有可能使针对融合肽的抗病毒药物的设计新鲜方法。鉴于融合肽在冠状病毒家族中高度保守,这些研究将直接适用于所有冠状病毒,包括引起冠状病毒的冠状病毒,这是冠状病毒传播能力的关键确定剂,是它如何与靶宿主膜相互作用。对于冠状病毒,进入宿主细胞是由一种称为Spike(S)的单个糖蛋白蛋白介导的。在S中,直接与膜相互作用的区域称为融合肽FP。 FP与宿主膜的物理化学相互作用锚定,从而使膜的必要变形导致病毒基因组传递到细胞中。这样一来,了解最基本水平的FP相互作用将支持制定限制这些相互作用以阻止感染传播的策略。预计该信息将有助于预测可能在未来对人类威胁的新兴菌株的特征。该项目的目的是测量和确定负责将FP插入膜中的特定分子间相互作用。具体而言,该项目将:1)使用单分子力量测量与原子力显微镜和生物学机制模型来控制FP的疏水相互作用的因素,以及2)使用圆形二进制症和等渗性钙列列术与具有分离型宿主表面的特异性相互作用来表征FP的结构 - 功能关系。该项目的智力优点是发现FP的宿主膜化学或氨基酸序列的变化如何调节疏水相互作用,并最终影响对感染传播至关重要的活性。该项目的更广泛的影响是提供信息,可以使抗病毒药的设计新颖方法,以及确定基本的设计规则,以告知FP如何促进与特定化学机制的相互作用,从而预测宿主的感染易感性。鉴于FP在COV家族中是高度保守的,因此这些研究将直接适用于所有COV,包括尚未出现的COV。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和更广泛的影响来审查标准,被视为通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Daniel其他文献

Recreating the Biological Steps of Viral Infection on a Bioelectronic Platform to Profile Viral Variants of Concern
在生物电子平台上重现病毒感染的生物学步骤,以分析值得关注的病毒变体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongmou Chao;Ekaterina Selivanovitch;K. Kallitsis;Zixuan Lu;Ambika Pachaury;Róisín M. Owens;Susan Daniel
  • 通讯作者:
    Susan Daniel

Susan Daniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Daniel', 18)}}的其他基金

NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
I-Corps: Cell-free Biosensors
I-Corps:无细胞生物传感器
  • 批准号:
    2229505
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
2020 SynCell Meeting
2020 SynCell 会议
  • 批准号:
    2024029
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Plant membrane on-a-chip for the genome wide studies of plant transport processes
EAGER:芯片上的植物膜,用于植物运输过程的全基因组研究
  • 批准号:
    2016107
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Uncovering the role of Golgi organization on function
合作研究:EAGER:揭示高尔基组织对功能的作用
  • 批准号:
    1935370
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Bio-nanomanufacturing of Protein Therapeutics Using Membrane Microfluidics
使用膜微流体的蛋白质治疗药物的生物纳米制造
  • 批准号:
    1728049
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Microbial Fuel Cell Optimization through Digital Microfluidic Electrochemistry in Single-Bacterial Drops
合作研究:通过单细菌液滴中的数字微流体电化学优化微生物燃料电池
  • 批准号:
    1605787
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ISS: Unmasking contact-line mobility for Inertial Spreading using Drop Vibration and Coalescence
国际空间站:利用液滴振动和聚结揭示惯性传播的接触线移动性
  • 批准号:
    1637960
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Viral coat protein arrays for rapid development and screening of anti-fusogenic antivirals against Ebolavirus
用于快速开发和筛选埃博拉病毒抗融合抗病毒药物的病毒外壳蛋白阵列
  • 批准号:
    1504846
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
A Single Particle Imaging Approach for the Detection of Virus Phenotypes in a Mixture
用于检测混合物中病毒表型的单粒子成像方法
  • 批准号:
    1263701
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于跨物种多组学揭示骨骼肌衰老过程中的转录后调控缺陷和相关功能基因的研究
  • 批准号:
    32301238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数学模型的媒介寄主选择偏好在柑橘黄龙病传播中的作用揭示
  • 批准号:
    12361097
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
  • 批准号:
    32372161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
表观遗传调控因子基因组合文库筛选揭示构巢曲霉沉默聚酮类基因簇的激活机制
  • 批准号:
    32300067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间转录组联合单细胞转录组揭示卵泡发育及早发性卵巢功能不全发生的机制研究
  • 批准号:
    32370917
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
  • 批准号:
    MR/X035166/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Revealing the regulatory mechanisms of endosomal cargo transporters
揭示内体货物转运蛋白的调控机制
  • 批准号:
    2337495
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Revealing complexity of hyaluronan-protein interactions: novel tools and insights
揭示透明质酸-蛋白质相互作用的复杂性:新颖的工具和见解
  • 批准号:
    BB/X007278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了