SHF: Small: Efficient and Accurate Learning with Low-Precision Components: A Cortex-Inspired Approach
SHF:小型:使用低精度组件进行高效、准确的学习:受皮质启发的方法
基本信息
- 批准号:1715443
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Achieving high performance and high-energy efficiency with a small footprint is a central challenge of computer engineering. This project targets to develop technologies with cutting-edge nanoscale devices towards a self-learning chip. It will be integrated with front-end sensors, process the information in real-time, and consume ultra-low energy. The success is likely to have an impact on the society, bringing broad benefits to multiple emerging applications, mobile vision and autonomous vehicles to name a few. The interdisciplinary nature of this project, as well as the frequent interaction with industry, will provide an ideal platform for education and training of state-of-the-art science and technology. It will improve the knowledge base of intelligent system design through new curriculum development, engaging undergraduate and minority students in research and practice, and participating in outreach programs that are customized for K-12 students. Furthermore, this project will advocate the web-based interface and workshops to disseminate the latest research outcome. Microprocessors have been a ubiquitous and vitally important part in our modern-day life. However, they are facing severe issues in artificial intelligent systems, which require tremendous amount of energy and data to train and operate the sophisticated algorithm. On the contrary, animal brains at various sizes achieve remarkable feats of learning and accuracy at energy costs much lower than human-engineered systems. Therefore, the central theme of this project is to transfer the latest knowledge of the structure and function of brains into neuromorphic design, generate novel insights for improvement of the engineered system, and achieve high accuracy and high energy efficiency despite the severe precision constraints of the nanoscale components. These neurobiological principles include approximate learning rules with low-precision synapses, neural motifs of excitation and inhibition, and hierarchical network models. The goal is to accomplish complex computation with much less data volume and resources, and promise magnitudes of improvement in energy efficiency and performance than microprocessors today.
以较小的占地面积实现高性能和高能效是计算机工程的核心挑战。该项目的目标是开发具有尖端纳米级器件的技术,以实现自学习芯片。它将与前端传感器集成,实时处理信息,并且消耗超低能耗。这一成功可能会对社会产生影响,为多种新兴应用、移动视觉和自动驾驶汽车等带来广泛的好处。该项目的跨学科性质以及与行业的频繁互动将为最先进科学技术的教育和培训提供理想的平台。它将通过新课程开发、让本科生和少数民族学生参与研究和实践以及参与为 K-12 学生定制的推广项目来改善智能系统设计的知识库。此外,该项目将倡导基于网络的界面和研讨会来传播最新的研究成果。微处理器已成为我们现代生活中无处不在且至关重要的一部分。然而,他们在人工智能系统中面临着严峻的问题,需要大量的能量和数据来训练和运行复杂的算法。相反,各种大小的动物大脑在学习和准确性方面取得了非凡的成就,而能源成本远低于人类工程系统。因此,该项目的中心主题是将大脑结构和功能的最新知识转移到神经拟态设计中,为改进工程系统产生新的见解,并在严格的精度限制下实现高精度和高能效。纳米级组件。这些神经生物学原理包括低精度突触的近似学习规则、兴奋和抑制的神经基序以及分层网络模型。其目标是用更少的数据量和资源完成复杂的计算,并有望比当今的微处理器大幅提高能源效率和性能。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards efficient neural networks on-a-chip: Joint hardware-algorithm approaches
迈向高效的片上神经网络:联合硬件算法方法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Du, X.;Krishnan, G.;Mohanty, A.;Li, Z.;Charan, G.;Cao, Y.
- 通讯作者:Cao, Y.
Automatic Compilation of Diverse CNNs Onto High-Performance FPGA Accelerators
- DOI:10.1109/tcad.2018.2884972
- 发表时间:2020-02-01
- 期刊:
- 影响因子:2.9
- 作者:Ma, Yufei;Cao, Yu;Seo, Jae-sun
- 通讯作者:Seo, Jae-sun
Efficient Network Construction Through Structural Plasticity
- DOI:10.1109/jetcas.2019.2933233
- 发表时间:2019-05
- 期刊:
- 影响因子:4.6
- 作者:Xiaocong Du;Zheng Li;Yufei Ma;Yu Cao
- 通讯作者:Xiaocong Du;Zheng Li;Yufei Ma;Yu Cao
Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
使用不准确的 RRAM 器件进行准确推理:联合算法设计解决方案
- DOI:10.1109/jxcdc.2020.2987605
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Charan, Gouranga;Mohanty, Abinash;Du, Xiaocong;Krishnan, Gokul;Joshi, Rajiv V.;Cao, Yu
- 通讯作者:Cao, Yu
Structured Pruning of RRAM Crossbars for Efficient In-Memory Computing Acceleration of Deep Neural Networks
- DOI:10.1109/tcsii.2021.3069011
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Jian Meng;Li Yang;Xiaochen Peng;Shimeng Yu;Deliang Fan;Jae-sun Seo
- 通讯作者:Jian Meng;Li Yang;Xiaochen Peng;Shimeng Yu;Deliang Fan;Jae-sun Seo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Cao其他文献
Pathfinding for 22nm CMOS designs using Predictive Technology Models
使用预测技术模型寻找 22nm CMOS 设计路径
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Xia Li;Wei Zhao;Yu Cao;Zhi Zhu;Jooyoung Song;David Bang;Chi;Seung H. Kang;Joseph Wang;M. Nowak;N. Yu - 通讯作者:
N. Yu
OPTIMIZATION OF RATELESS CODED SYSTEMS FOR WIRELESS
无线无速率编码系统的优化
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Cao - 通讯作者:
Yu Cao
A prediction model for two-dimensional pressure distribution from underwater shock wave focusing by an ellipsoidal reflector.
椭球反射镜水下冲击波聚焦二维压力分布预测模型。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
Lei Liu;R. Guo;Liang Chen;Yu Cao;Yongliang Yang;Bobo Zhao - 通讯作者:
Bobo Zhao
Routing a glass substrate via laser induced plasma backward deposition of copper seed layer for electroplating
通过激光诱导等离子体反向沉积铜籽晶层对玻璃基板进行电镀
- DOI:
10.1016/j.optlastec.2020.106849 - 发表时间:
2021-06 - 期刊:
- 影响因子:5
- 作者:
Chao Zhang;Yanling Yu;Yu Cao;Xinlei Wei;Shaoxing Su;Wenwen Liu - 通讯作者:
Wenwen Liu
Effect of craniotomy on oxidative stress and its effect on plasma L-carnitine levels.
开颅手术对氧化应激的影响及其对血浆左卡尼汀水平的影响。
- DOI:
10.1139/cjpp-2014-0149 - 发表时间:
2014 - 期刊:
- 影响因子:2.1
- 作者:
Huan;Zhen Zhao;Hai;Le;Yu Cao - 通讯作者:
Yu Cao
Yu Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Cao', 18)}}的其他基金
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Conference: Hardware and Algorithms for Learning On-a-chip; November 5, 2015; Austin, TX
SHF:会议:片上学习的硬件和算法;
- 批准号:
1545974 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
REU SITE: Research on Biomedical Informatics
REU 站点:生物医学信息学研究
- 批准号:
1415477 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
REU SITE: Research on Biomedical Informatics
REU 站点:生物医学信息学研究
- 批准号:
1156639 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Fast Sign-Off of Nanoscale Memory: From Predictive Device Modeling to Statistical Circuit Synthesis
SHF:小型:协作研究:纳米级存储器的快速签核:从预测设备建模到统计电路综合
- 批准号:
1016831 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Bridging the Technology-EDA Gap through Strategic Tools for Robust Nanometer Design
职业:通过稳健纳米设计的战略工具弥合技术与 EDA 差距
- 批准号:
0546054 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
基于亲和超滤高效筛选苗药榜看雾中治疗类风湿性关节炎的小分子TNF-α抑制剂
- 批准号:82360834
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
小分子高效诱导人成纤维细胞重编程为功能肝细胞的研究
- 批准号:32300610
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海洋节菱孢菌中靶向RORγ-DLL3信号轴抗小细胞肺癌的Arthpyrone类吡啶酮生物碱的高效发掘及作用机制研究
- 批准号:42376124
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
太阳光致异构的偶氮小分子的开发及其在高效太阳能储热中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效跨越血脑屏障的智能递药系统用于靶向清除感染小胶质细胞内XDR-AB病菌的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2341183 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326894 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant