Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach

协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法

基本信息

  • 批准号:
    2334624
  • 负责人:
  • 金额:
    $ 21.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This research project designs software-hardware collaborative mechanisms to boost the execution efficiency of 3D perception (point cloud) algorithms by an order of magnitude. Achieving this goal requires designing fundamentally new algorithmic primitives, offline and run-time systems, and hardware architectures that tame the irregular computation and memory patterns in 3D perception algorithms. This research unlocks next-generation software innovation in emerging domains driven by 3D perception, such as autonomous driving, Augmented/Virtual Reality, and precision agriculture. The research agenda is complemented by an educational/outreach agenda. The PIs are (1) offering summer “introduction to computing” courses to high school students from the Rochester Central School District, (2) engaging students in RIT’s National Technical Institute for the Deaf program through experiencing 3D sensing and research activities, (3) introducing new courses/modules in both UR and RIT on 3D perception, both on algorithms and hardware systems, and (4) offering undergraduate students inclusive opportunities for hands-on experience in emerging application domains and hardware acceleration.This research project addresses the fundamental mismatch between the irregularities in point-cloud algorithms and today’s hardware architectures, which are primarily optimized for 2D image- and video-processing algorithms that are regular stencil pipelines operating on structured data. The key intellectual merit is the pursuit of new algorithms and system architectures that reduce/eliminate irregular computation and memory accesses in 3D perception. The technical contribution is three-fold: 1) efficient, yet generally applicable, hardware building blocks required to accelerate point cloud algorithms, 2) run-time systems that dynamically adapt to operating constraints (e.g., hardware resources, performance, energy) in an application-aware and data-aware manner, and 3) a new class of efficient-by-construction 3D perception algorithms that leverage the small data volume in single-beam point clouds. The algorithm-hardware co-designed system not only accelerates current 3D perception algorithms, but also provides a computing substrate so that 3D perception can be pervasively used as a building block in future application domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目设计了软件硬件协作机制,以提高3D感知(点云)算法的执行效率。实现此目标需要设计新的算法原始算法,离线和运行时系统,以及在3D感知算法中驯服不规则计算和内存模式的硬件体系结构。这项研究通过3D感知来解锁新兴域中的下一代软件创新,例如自动驾驶,增强/虚拟现实和精确农业。研究议程由教育/外展议程完成。 PI(1)为来自罗切斯特中央学区的高中学生提供夏季“计算概论”课程,(2)通过体验3D感应和研究活动,让学生参与RIT的国家聋人技术研究所,(3)介绍您的新课程/模块,以进行3D感知和RIT,并在altgorment和RIT上进行杂物,以及4D的范围(4D),以及4D的范围(4D)。该研究项目在新兴的应用领域和硬件加速度方面进行动手实践经验。解决了Point-Cloud算法中的不规则性与当今的硬件体系结构之间的基本不匹配,这些算法主要针对2D图像和视频处理算法进行了优化,这些算法是在结构数据上运行的常规模板管道。关键的智力优点是追求新算法和系统体系结构,这些算法和系统体系结构减少/消除了3D感知中不规则的计算和内存访问。技术贡献是三个方面的:1)加速点云算法所需的高效,但通常适用的硬件构建块,2)运行时系统,这些系统以动态适应运营约束(例如硬件资源,性能,绩效,能源),以一种已意识到的和数据意识的方式以及3)在较小的范围内构建量的新型型号,以备量构建量的新量。算法 - 硬件共同设计的系统不仅可以加速当前的3D感知算法,而且还提供了计算基板,以便可以将3D感知在未来的应用领域中用作构建范围。该奖项反映了NSF的法定任务,反映了通过评估基金会的cripial crrit and throbirial and tocriatial and tocrit and tocrita和broaditial and throughia and throughia and crarit and cr.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From Local to Holistic: Self-supervised Single Image 3D Face Reconstruction Via Multi-level Constraints
Multi-view Geometry Consistency Network for Facial Micro-Expression Recognition From Various Perspectives
Object Detection Based on Raw Bayer Images
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guoyu Lu其他文献

Multi-Task Learning for Single Image Depth Estimation and Segmentation Based on Unsupervised Network
Top-k Algorithm Based on Extraction
基于提取的Top-k算法
  • DOI:
    10.1007/978-3-642-28314-7_16
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingjuan Li;Xuelin Zeng;Guoyu Lu
  • 通讯作者:
    Guoyu Lu
An Improved Phase Correlation Method for Stop Detection of Autonomous Driving
自动驾驶停车检测的改进相位相关法
  • DOI:
    10.1109/access.2020.2990227
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhelin Yu;Lidong Zhu;Guoyu Lu
  • 通讯作者:
    Guoyu Lu
RawSeg: Grid Spatial and Spectral Attended Semantic Segmentation Based on Raw Bayer Images
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoyu Lu
  • 通讯作者:
    Guoyu Lu
Bird-View 3D Reconstruction for Crops with Repeated Textures

Guoyu Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guoyu Lu', 18)}}的其他基金

CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Continuing Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2334690
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
  • 批准号:
    2334246
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2104032
  • 财政年份:
    2021
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2126643
  • 财政年份:
    2021
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
  • 批准号:
    2105257
  • 财政年份:
    2021
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了