CRII: ACI: 4D Dynamic Anisotropic Meshing and Applications

CRII:ACI:4D 动态各向异性网格划分和应用

基本信息

  • 批准号:
    1657364
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

There is an emerging need in healthcare, transportation, and simulation areas to realistically reconstruct, visualize, and capture space-time (4D) models/images (dynamic objects) from a complicated scenario in real-time. For example, high-fidelity dynamically modeling and visualizing 4D deformable shapes and variations of organs and their surrounding tissues in real-time become important for building an effective 4D model planning/capturing for radiation therapy (e.g., 4D-Doctor system). It requires dynamic anisotropic modeling and multi-modality imaging techniques for accurate registration, segmentation, and visualization. The goal of this project is to develop a tool for efficiently computing high-quality 4D dynamic anisotropic meshing models for complicated 4D objects with features and details in the large-scale volume image data. This project involves several disciplines, such as geometric modeling, computer graphics, and medical image processing, and has a potential to provide a high-quality platform for both interdisciplinary research and education integration. This project will aim to enrich the computer science and engineering curriculum at Wayne State University in both the undergraduate and graduate levels. Therefore, this research aligns with the NSF mission to promote the progress of science and to advance the national health, prosperity and welfare.A theoretical and computational framework for 4D dynamic anisotropic meshing with high quality and efficiency is essential for tackling challenges in efficiently representing and capturing the 4D data. The key strength of this project focuses on the transformative research ideas and approaches in particle-based approach for Riemannian metric mesh modeling, serving as a foundation for geometry-guided 3D/4D imaging informatics. The proposed exploratory research activities will address the following major themes and objectives: (1) to develop a novel particle-based method for high-quality 3D and 4D anisotropic tetrahedral meshing; (2) to evaluate the mesh quality and apply the proposed theoretical meshing approaches in applications to medical imaging, and develop a testbed system to evaluate its capability and potential in 4D-Doctor system, including 4D image registration and segmentation. The unified theoretical particle-based meshing framework, integrating Gaussian energy, dynamic Riemannian metrics, and high-dimensional embedding theory, can enable efficient generation of dynamic anisotropic meshes from a brand new perspective. This research initiative is innovative as it will establish a novel geometric modeling framework supporting 3D/4D imaging informatics.
医疗保健、交通和模拟领域日益需要从复杂的场景中实时真实地重建、可视化和捕获时空 (4D) 模型/图像(动态对象)。例如,实时高保真动态建模和可视化器官及其周围组织的 4D 可变形形状和变化对于构建有效的放射治疗 4D 模型规划/捕获(例如 4D-Doctor 系统)变得非常重要。它需要动态各向异性建模和多模态成像技术来实现精确配准、分割和可视化。该项目的目标是开发一种工具,用于针对具有大规模体积图像数据特征和细节的复杂 4D 对象,高效计算高质量 4D 动态各向异性网格模型。该项目涉及几何建模、计算机图形学、医学图像处理等多个学科,有潜力为跨学科研究和教育融合提供优质平台。该项目旨在丰富韦恩州立大学本科生和研究生的计算机科学和工程课程。因此,这项研究符合 NSF 促进科学进步、促进国民健康、繁荣和福利的使命。高质量、高效率的 4D 动态各向异性网格划分理论和计算框架对于应对 ef&#64257 中的挑战至关重要;科学地表示和捕获 4D 数据。该项目的关键优势在于基于粒子的黎曼度量网格建模方法的变革性研究思想和方法,作为几何引导的 3D/4D 成像信息学的基础。拟议的探索性研究活动将解决以下主要主题和目标:(1)开发一种新颖的基于粒子的高质量3D和4D各向异性四面体网格划分方法; (2) 评估网格质量并将所提出的理论网格方法应用于医学成像,并开发一个测试平台系统来评估其在 4D-Doctor 系统中的能力和潜力,包括 4D 图像配准和分割。基于统一理论的粒子网格划分框架,集成高斯能量、动态黎曼度量和高维嵌入理论,可以从全新的角度高效生成动态各向异性网格。这项研究举措具有创新性,因为它将建立一个支持 3D/4D 成像信息学的新颖几何建模框架。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Field-Aligned and Lattice-Guided Tetrahedral Meshing
场对齐和晶格引导的四面体网格划分
  • DOI:
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Ni, Saifeng;Zhong, Zichun;Huang, Jin;Wang, Wenping;Guo, Xiaohu
  • 通讯作者:
    Guo, Xiaohu
VC-Net: Deep Volume-Composition Networks for Segmentation and Visualization of Highly Sparse and Noisy Image Data
VC-Net:用于高度稀疏和噪声图像数据的分割和可视化的深度体合成网络
Surface Reconstruction by Parallel and Unified Particle-Based Resampling from Point Clouds
通过基于点云的并行和统一粒子重采样进行表面重建
  • DOI:
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Zhong, Sikai;Zhong, Zichun;Hua, Jing
  • 通讯作者:
    Hua, Jing
JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for 3D Cerebrovascular Segmentation
JointVesselNet:用于 3D 脑血管分割的联合体积投影卷积嵌入网络
  • DOI:
    10.1007/978-3-030-59725-2_11
  • 发表时间:
    2020-10-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Wang;Guoli Yan;Haikuan Zhu;S. Buch;Ying Wang;E. Haacke;Jing Hua;Z. Zhong
  • 通讯作者:
    Z. Zhong
Computing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric
从任意平滑黎曼度量计算高维欧几里得嵌入
  • DOI:
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Zhong, Zichun;Wang, Wenping;Lévy, Bruno;Hua, Jing;Guo, Xiaohu
  • 通讯作者:
    Guo, Xiaohu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zichun Zhong其他文献

Computer Aided Geometric Design
计算机辅助几何设计
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Artem Komarichev;Jing Hua;Zichun Zhong
  • 通讯作者:
    Zichun Zhong
ROSE: Multi-level super-resolution-oriented semantic embedding for 3D microvasculature segmentation from low-resolution images
ROSE:面向低分辨率图像的 3D 微血管分割的多级超分辨率语义嵌入
  • DOI:
    10.1016/j.neucom.2024.128038
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yifan Wang;Haikuan Zhu;Hongbo Li;Guoli Yan;S. Buch;Ying Wang;E. Haacke;Jing Hua;Zichun Zhong
  • 通讯作者:
    Zichun Zhong
TCB-Spline-Based Image Vectorization
基于 TCB 样条的图像矢量化
  • DOI:
    10.1145/3513132
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Haikuan Zhu;Juan Cao;Yanyang Xiao;Zhonggui Chen;Zichun Zhong;Yongjie Jessica Zhang
  • 通讯作者:
    Yongjie Jessica Zhang
Volatility Forecasting of Copper Futures Based on HAR-RV Model
基于HAR-RV模型的铜期货波动预测
  • DOI:
    10.54691/bcpbm.v26i.2034
  • 发表时间:
    2022-09-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyi Fang;Chen Zhao;Zichun Zhong
  • 通讯作者:
    Zichun Zhong
Clinical Investigation : Thoracic Cancer A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data
临床研究:胸癌一种基于传统锥束 CT 投影数据评估每日肺部肿瘤运动的新型无标记技术
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yin Yang;Zichun Zhong;Xiaohu Guo;Jing Wang;John Anderson;Timothy Solberg;Weihua Mao
  • 通讯作者:
    Weihua Mao

Zichun Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zichun Zhong', 18)}}的其他基金

Elements: MVP: Open-Source AI-Powered MicroVessel Processor for Next-Generation Vascular Imaging Data
要素:MVP:用于下一代血管成像数据的开源人工智能微血管处理器
  • 批准号:
    2311245
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: A Parallel and Efficient Computational Framework for Unified Volumetric Meshing in Large-Scale 3D/4D Anisotropy
职业生涯:大规模 3D/4D 各向异性中统一体积网格划分的并行高效计算框架
  • 批准号:
    1845962
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
OAC Core: Small: Shape-Image-Text: A Data-Driven Joint Embedding Framework for Representing and Analyzing Large-Scale Brain Microvascular Data
OAC 核心:小型:形状-图像-文本:用于表示和分析大规模脑微血管数据的数据驱动的联合嵌入框架
  • 批准号:
    1910469
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Small: High-Dimensional Euclidean Embedding for 4D Volumetric Shape with Multi-Tensor Fields
CHS:小型:具有多张量场的 4D 体积形状的高维欧几里得嵌入
  • 批准号:
    1816511
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
EAGER: Large-Scale Distributed Learning of Noisy Labels for Images and Video
EAGER:图像和视频噪声标签的大规模分布式学习
  • 批准号:
    1554264
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

ACI-OPT: Aircraft Component Installation Optimization
ACI-OPT:飞机部件安装优化
  • 批准号:
    576486-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Alliance Grants
ドイツ語におけるzu不定詞の発達と文構造の変化についての通時的研究
德语zu不定式发展及句子结构变化的历时研究
  • 批准号:
    22K00506
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ACI-OPT: Aircraft Component Installation Optimization
ACI-OPT:飞机部件安装优化
  • 批准号:
    576486-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Alliance Grants
A research survey of more than human culture in East Asia and its connection to design theory
对东亚人类文化及其与设计理论的联系的研究调查
  • 批准号:
    21K18344
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Proposal and practical evaluation of communication design that builds a mutually caring relationship with more than human beings
与人类以外的人建立相互关怀关系的传达设计提案及实践评估
  • 批准号:
    21H03768
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了