SaTC: CORE: Small: SLIQ: Securing Large-Scale Noisy-Intermediate Scale Quantum Computing

SaTC:核心:小型:SLIQ:确保大规模噪声中级量子计算的安全

基本信息

  • 批准号:
    2129675
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Application-specific parametric quantum circuits designed to solve societal and science problems using powerful quantum computers contain assets and embed Intellectual Property (IP). Next generation quantum computers will face two new security issues: (i) evolution of multi-tenant computing (MTC) where multiple programs will share the hardware. The unwanted coupling between qubits can leak information and allow fault/Trojan injection; (ii) dependence on untrusted third-party compilers which can steal IP and tamper the circuit. This project will identify the vulnerabilities and threat vectors and develop a suite of defenses at the circuit and system level to secure future large scale quantum computing.The intellectual merits of this project are rooted at, (i) identification of various assets in quantum circuits, algorithms and hardware; (ii) identification of vulnerabilities in MTC environment such as, crosstalk, qubit allocation, scheduling and hardware splitting policies and untrusted compiler such as, embedding of IP, crosstalk, sensitivity of circuit quality to qubit allocation and gates; (iii) identification of security and privacy threats from MTC environment e.g., crosstalk-based fault/Trojan injection and data leakage and untrusted compiler such as, reverse engineering and tampering; (iv) development of circuit and system-level defenses such as, machine learning-based screening, obfuscation and split compilation. By addressing security, this project will remove a major roadblock towards applicability of quantum computers in security/privacy sensitive sectors. It will lead to widespread adoption of quantum computers in healthcare, energy and defense sectors and therefore, make a positive economic impact. This project will establish collaboration with industry and experts from computer science and cryptography communities to exchange ideas and will contribute directly to the Quantum Initiative Act and AI initiative Act. It will train new generation of workforce to solve problems using quantum computing. The tools and methodologies from this project can be plugged into existing commercial optimization tools. All publicly released data will be posted at PI’s academic website http://personal.psu.edu/~szg212 and the code developed in this project will be released in github (https://github.com/szg212) throughout the project and preserved without restrictions after the award ends. The conference and journal papers produced in this project will be archived in publisher’s website (e.g., ACM, IEEE). The presentations, tutorials and images will be hosted in PI’s academic website throughout the project and preserved without restrictions after the award ends. The video files of demonstrations and presentations will be uploaded in YouTube and will be preserved without restrictions after the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
专用的参数量子电路,旨在使用包含资产和嵌入知识产权(IP)的强大量子计算机解决社会和科学问题。下一代量子计算机将面临两个新的安全问题:(i)多租户计算(MTC)的演变,其中多个程序将共享硬件。配额之间不需要的耦合会泄漏信息并允许故障/木马注射; (ii)依赖不受信任的第三方编译器,这些编译器可以窃取IP并篡改电路。该项目将确定脆弱性和威胁向量,并在电路和系统级别开发一套防御措施,以确保未来的大规模量子计算。该项目的智力优点植根于(i)识别量子电路,算法和硬件中各种资产的识别; (ii)识别MTC环境中的漏洞,例如,串扰,配额分配,调度和硬件拆分策略以及不信任的编译器,例如IP的嵌入,串扰,串扰,电路质量对配额分配和门的敏感性; (iii)确定MTC环境的安全性和隐私威胁,例如基于串扰的故障/特洛伊木马注入以及数据泄漏以及不受信任的编译器,例如,逆向工程和篡改; (iv)开发电路和系统级防御措施,例如基于机器学习的筛选,混淆和拆分汇编。通过解决安全性,该项目将消除量子计算机在安全/隐私敏感部门中适用的主要障碍。这将导致量子计算机在医疗保健,能源和防御部门的广泛采用,因此产生了积极的经济影响。该项目将与来自计算机科学和密码社区的行业和专家建立合作,以交换思想,并将直接为《量子倡议法》和AI Initiative Act做出贡献。它将培训新一代劳动力,以使用量子计算解决问题。该项目的工具和方法可以插入现有的商业优化工具中。所有公开发布的数据将发布在PI的学术网站http://personal.psu.edu/~szg212,该项目中开发的代码将在Github(https://github.com/szg212)发布,并在整个项目中保留,并在授予结束后不限于限制。该项目中生产的会议和期刊论文将在出版商的网站(例如ACM,IEEE)中存档。演讲,教程和图像将在PI的学术网站中托管,并在奖励结束后无限制地保存。演示和演示文稿的视频文件将在YouTube上载,并将在项目之后不限于限制。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,通过评估被认为是珍贵的支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trainable PQC-Based QRAM for Quantum Storage
用于量子存储的可训练的基于 PQC 的 QRAM
  • DOI:
    10.1109/access.2023.3278600
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Phalak, Koustubh;Li, Junde;Ghosh, Swaroop
  • 通讯作者:
    Ghosh, Swaroop
Special Session: On the Reliability of Conventional and Quantum Neural Network Hardware
特别会议:论传统和量子神经网络硬件的可靠性
  • DOI:
    10.1109/vts52500.2021.9794194
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadi, Mehdi;He, Yi;Li, Yanjing;Alam, Mahabubul;Kundu, Satwik;Ghosh, Swaroop;Bahrami, Javad;Karimi, Naghmeh
  • 通讯作者:
    Karimi, Naghmeh
Split Compilation for Security of Quantum Circuits
量子电路安全的分割编译
  • DOI:
    10.1109/iccad51958.2021.9643478
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saki, Abdullah Ash;Suresh, Aakarshitha;Topaloglu, Rasit Onur;Ghosh, Swaroop
  • 通讯作者:
    Ghosh, Swaroop
Knowledge Distillation in Quantum Neural Network using Approximate Synthesis
SCANN: Side Channel Analysis of Spiking Neural Networks
  • DOI:
    10.3390/cryptography7020017
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karthikeyan Nagarajan;Rupshali Roy;R. Topaloglu;Sachhidh Kannan;Swaroop Ghosh
  • 通讯作者:
    Karthikeyan Nagarajan;Rupshali Roy;R. Topaloglu;Sachhidh Kannan;Swaroop Ghosh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swaroop Ghosh其他文献

An Efficient Circuit Compilation Flow for Quantum Approximate Optimization Algorithm
一种高效的量子近似优化算法电路编译流程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Alam;Abdullah Ash;Swaroop Ghosh
  • 通讯作者:
    Swaroop Ghosh
Guest Editorial Emerging Memories - Technology, Architecture and Applications (First Issue)
客座社论新兴记忆 - 技术、架构和应用(第一期)
A 1 Gb 2 GHz 128 GB/s Bandwidth Embedded DRAM in 22 nm Tri-Gate CMOS Technology
采用 22 nm 三栅 CMOS 技术的 1 Gb 2 GHz 128 GB/s 带宽嵌入式 DRAM
  • DOI:
    10.1109/jssc.2014.2353793
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    F. Hamzaoglu;U. Arslan;N. Bisnik;Swaroop Ghosh;M. Lal;N. Lindert;Mesut Meterelliyoz;R. Osborne;Joodong Park;S. Tomishima;Yih Wang;Kevin Zhang
  • 通讯作者:
    Kevin Zhang
Novel application of spintronics in computing, sensing, storage and cybersecurity
自旋电子学在计算、传感、存储和网络安全中的新应用
FPCAS: In-Memory Floating Point Computations for Autonomous Systems
FPCAS:自治系统的内存浮点计算

Swaroop Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swaroop Ghosh', 18)}}的其他基金

FET:Medium: Drug discovery using quantum machine learning
FET:中:使用量子机器学习进行药物发现
  • 批准号:
    2210963
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: EDU: A Curriculum for Quantum Security and Trust
SaTC:EDU:量子安全和信任课程
  • 批准号:
    2113839
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator - Track C: SQAI: Scalable Quantum Artificial Intelligence for Discovery
NSF 融合加速器 - 轨道 C:SQAI:用于发现的可扩展量子人工智能
  • 批准号:
    2040667
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: STARSS: Small: Assuring Security and Privacy of Emerging Non-Volatile Memories
SaTC:STARSS:小型:确保新兴非易失性存储器的安全性和隐私
  • 批准号:
    1814710
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: EDU: CyCAD: A Virtual Platform for Cybersecurity Curriculum on Analog Design
SaTC:EDU:CyCAD:模拟设计网络安全课程虚拟平台
  • 批准号:
    1821766
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF:Small: Collaborative Research: Exploring 3-Dimensional Integration Strategies of STTRAM
SHF:Small:协作研究:探索 STTRAM 的 3 维集成策略
  • 批准号:
    1718474
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: EDU: Advancing Cybersecurity Education through Self-Learning Cybersecurity Training Kit
SaTC:EDU:通过自学网络安全培训套件推进网络安全教育
  • 批准号:
    1723687
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1722557
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1441757
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了