Quantitative Methods for Modeling Properties of Random Media
随机介质属性建模的定量方法
基本信息
- 批准号:1700329
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physical systems are best understood as the collective behavior of many smaller irregularities. An example is a cloud of gas comprised of a huge number of individual particles colliding with each other. On a larger (macroscopic) scale, this very seemingly complicated system may have a much simpler, but still very precise, description (the ideal gas law, for instance) due to the effects of the incalculable number of smaller scale interactions "averaging out." Other examples include the modeling of water moving through a porous rock, or the physical properties of composite materials. The derivation of large-scale, "averaged" laws from complicated small-scale irregularities and interactions lies in the realm of statistical physics. The goal of this project is to develop mathematical tools for a rigorous understanding of such problems under the assumption that the small-scale irregularities are occurring randomly. We would like to answer such questions as: How can the large-scale physical law, including the proportionality constants, be accurately predicted from the behavior of the small-scale interactions? What is the error in the large-scale law, in other words, what length scale is large enough that we observe the averaged behavior rather than seeing the complicated random fluctuations? Such questions are not just important to statistical physics and probability, but they also have wider applications, such as to the design of optimal composite materials or the construction of geothermal power plants. Partial differential equations are used to model many important physical systems, and the focus of the project is to understand the large-scale behavior of solutions to such equations under the assumption that the coefficients exhibit small-scale random oscillations. Obtaining an "averaged" partial differential equation that describes the large-scale behavior of the original, more complicated equation is called "homogenization" in the mathematical literature. If randomness is incorporated in the model, it is usually referred to as "stochastic homogenization." In recent years, researchers have developed a rather complete quantitative theory of stochastic homogenization for the simplest situation: uniformly elliptic equations. These equations model electrostatic properties of composite materials, for instance. The present project aims to go further by obtaining a quantitative theory of homogenization for "degenerate" equations as well as equations in porous media. Particular goals include rigorously justifying the Darcy-Brinkman law for fluid flow in a porous rock with quantitative error bounds; deriving the effective viscosity of a dilute suspension of particles in a fluid; obtaining bounds for the diffusivity of a particle moving randomly on a percolation cluster as well as more precise estimates for the long-time behavior (intermediate asymptotics) of a diffusion in a random medium; the analysis of boundary layers in periodic and stochastic homogenization; and obtaining homogenization results for shape optimization problems. For each of these problems, the goal is to develop a quantitative mathematical theory that provides explicit error bounds and robust analytic techniques.
最好将许多物理系统理解为许多较小的违规行为的集体行为。一个例子是一团气体,由大量的单个粒子相互碰撞。在较大(宏观的)尺度上,由于较小的较小相互作用的影响不可估量的影响,这种看似复杂的系统可能具有更简单但非常精确的描述(例如,理想的气体定律)。 “其他示例包括通过多孔岩石移动的水或复合材料的物理特性进行建模。复杂的小规模不规则和相互作用的大规模“平均”定律的推导在于统计物理学领域。该项目的目的是开发数学工具,以严格理解此类问题,假设小规模不规则发生了。我们想回答以下问题:如何通过小规模互动的行为准确预测大规模的物理定律,包括比例性常数?大规模定律的错误是什么,换句话说,什么长度尺度足够大,以至于我们观察到平均行为而不是看到复杂的随机波动?这些问题不仅对统计物理和概率很重要,而且还具有更广泛的应用,例如设计最佳复合材料或地热发电厂的建设。部分微分方程用于对许多重要的物理系统进行建模,该项目的重点是在该系数表现出小规模的随机振荡的假设下,了解解决方案的大规模行为。在数学文献中,获得描述原始方程的大规模行为的“平均”部分微分方程称为“均质化”。如果在模型中纳入了随机性,则通常称为“随机同质化”。近年来,研究人员为最简单的情况开发了一个相当完整的随机均质化理论:均匀的椭圆方程。这些方程式模型复合材料的静电性能。本项目的目的是通过获得“退化”方程式的均质化定量理论以及多孔介质中的方程。特定的目标包括严格地证明在具有定量误差范围的多孔岩石中的Darcy-Brinkman定律;得出液体中颗粒稀释液的有效粘度;获得在渗透群集上随机移动的粒子扩散性的边界,以及在随机培养基中扩散的长期行为(中间渐近性)的更精确估计;周期性和随机均质化中边界层的分析;并获得形状优化问题的均质化结果。对于这些问题,目标是开发一种定量数学理论,该理论提供明确的误差界限和鲁棒的分析技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher-Order Linearization and Regularity in Nonlinear Homogenization
- DOI:10.1007/s00205-020-01519-1
- 发表时间:2019-10
- 期刊:
- 影响因子:2.5
- 作者:S. Armstrong;Samuel J. Ferguson;Tuomo Kuusi
- 通讯作者:S. Armstrong;Samuel J. Ferguson;Tuomo Kuusi
Quantitative stochastic homogenization and regularity theory of parabolic equations
- DOI:10.2140/apde.2018.11.1945
- 发表时间:2017-05
- 期刊:
- 影响因子:2.2
- 作者:S. Armstrong;A. Bordas;J. Mourrat
- 通讯作者:S. Armstrong;A. Bordas;J. Mourrat
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Armstrong其他文献
The mutation in miR-128b blocks processing and induces functional consequences
miR-128b 的突变会阻碍加工并引发功能性后果
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish;Ai Kotani - 通讯作者:
Ai Kotani
The mutation in microRNA gene is important in tumor biology
microRNA基因突变在肿瘤生物学中很重要
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish - 通讯作者:
and Harvey Lodish
miR-128 plays important roles in MLL related leukemia
miR-128在MLL相关白血病中发挥重要作用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Daon Ha;Prakash Rao;Gregory Hyde;Scott Armstrong;and Harvey F.Lodish - 通讯作者:
and Harvey F.Lodish
Predicting Elections from Biographical Information about Candidates
根据候选人的传记信息预测选举
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Scott Armstrong;A. Graefe - 通讯作者:
A. Graefe
Student Teams Achievement Divisions (STAD) in a twelfth grade classroom: Effect on student achievement and attitude
十二年级课堂上的学生团队成就部门 (STAD):对学生成就和态度的影响
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Scott Armstrong;J. Palmer - 通讯作者:
J. Palmer
Scott Armstrong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Armstrong', 18)}}的其他基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Renormalization in Statistical Mechanics and Partial Differential Equations
统计力学和偏微分方程的重整化
- 批准号:
1954357 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Quantitative Stochastic Homogenization and Renormalization Methods
定量随机均匀化和重正化方法
- 批准号:
2000200 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
基于知识重用的车身自动几何建模方法研究
- 批准号:51905389
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
产品造型的类比推理式对抗生成设计方法研究
- 批准号:51905175
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于近壁面二次流修正方法的高负荷轴流压气机吸力面-端面造型反设计研究
- 批准号:51906027
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于弱监督深度学习的三维模型多特征自适应形状分析方法研究
- 批准号:61872321
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
面向CAD/CNC的曲线/曲面表示理论与方法研究
- 批准号:61872332
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
- 批准号:
10667049 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Genetic Studies of Alzheimer's Disease in Jewish and Arab Populations
犹太人和阿拉伯人群阿尔茨海默病的遗传学研究
- 批准号:
10639024 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Resolving sources of heterogeneity and comorbidity in alcohol use disorder
解决酒精使用障碍的异质性和合并症的来源
- 批准号:
10783325 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别: