Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
基本信息
- 批准号:2350340
- 负责人:
- 金额:$ 44.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is focused on the development of new mathematics for analyzing the statistical behavior of physical systems which exhibit complex behavior across a large number of length scales. A typical examples include turbulent fluids, such as the earth's atmosphere, which have fluctuations on the human scale (a gust of wind) and on the continental scale (weather patterns), and every scale in between. Other examples include important models in statistical mechanics and quantum field theory. Such chaotic physical systems have interesting behaviors which emerge through the interaction of these very different length scales, often called "critical phenomena" by physicists. Physicists have developed heuristic, non-rigorous ways of understanding and analyzing many such physical systems, some of which are called "renormalization group" arguments. One of the main goals of this project is to develop precise versions of these informal arguments which are mathematically rigorous. In the past decade, the work of the Principal Investigator (PI) and other mathematicians have led to a rigorous theory of "quantitative homogenization" of certain partial differential equations. These equations have some of the properties of the complex physical systems mentioned above, and the homogenization theory resembles renormalization group-type arguments in important ways. However, it currently works well only for problems with a small number of length scales. The project proposes to increase the level of sophistication of the homogenization methods until the theory can be deployed more flexibly on physical systems exhibiting critical behavior. This requires the development of new mathematical ideas and concepts and will require input from analysis, probability theory, partial differential equations and mathematical physics. The project provides research training opportunities for graduate students. The project has two main goals. The first one concerns improving the quantitative homogenization theory, so that it is more explicit in its dependence on important parameters in the equation (like the ellipticity ratio) and allows for degenerate and possibly unbounded coefficient fields. This is a well-known open problem in the subfield, but the PI and his collaborator Kuusi have made recent progress on this question, and this project will continue to develop these new ideas. A second focus of the project is to use these analytic methods developed for homogenization as means of formalizing heuristic renormalization group arguments in physics. Such methods arise in a wide variety of contexts, but the project has a few specific problems in mind. One arises in fluid turbulence, and concerns proving the anomalous diffusion of a passive scalar advected by a rough vector field. The PI and his collaborator Vicol have made recent progress on this question by using homogenization to formalize a renormalization group argument. This points the way to further possibilities, including the construction of more physically realistic examples of anomalous diffusion. Another potential application lies in Euclidean field theory, following a stochastic quantization approach to study Gibbs measures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是开发新数学,用于分析物理系统的统计行为,这些系统在大量长度尺度上表现出复杂的行为。一个典型的例子包括湍流,例如地球大气,它们在人体尺度上有波动(风的阵风)和大陆尺度(天气模式),以及介于两者之间的每个规模。其他示例包括统计力学和量子场理论中的重要模型。这种混乱的物理系统具有有趣的行为,通过这些截然不同的长度尺度的相互作用出现,物理学家通常称为“关键现象”。物理学家已经开发了启发式,非鲁and的方式来理解和分析许多这样的物理系统,其中一些被称为“重新归一化组”论点。该项目的主要目标之一是开发这些非正式论证的精确版本,这些版本在数学上是严格的。在过去的十年中,主要研究者(PI)和其他数学家的工作导致了某些部分偏微分方程的“定量均质化”的严格理论。这些方程具有上面提到的复杂物理系统的某些特性,并且均质理论以重要方式类似于重新归一化的群体型论证。但是,目前仅适用于少量长度尺度的问题。该项目建议提高均质化方法的复杂水平,直到可以在表现出关键行为的物理系统上更灵活地部署该理论为止。这需要开发新的数学思想和概念,并需要分析,概率理论,部分微分方程和数学物理学的输入。该项目为研究生提供了研究培训机会。 该项目有两个主要目标。第一个涉及改善定量均质化理论,因此它在方程中对重要参数的依赖性(如椭圆度比)更为明确,并允许退化且可能是无限的系数场。这是子领域众所周知的开放问题,但是PI及其合作者Kuusi在这个问题上取得了最新进展,该项目将继续发展这些新想法。该项目的第二个重点是将开发的用于均质化的分析方法用作物理学中启发式重新归一化组的形式化的手段。这种方法出现在各种各样的情况下,但是该项目有一些特定的问题。一种是在流体湍流中出现的,并且涉及证明由粗糙的矢量场所推高的被动标量的异常扩散。 PI和他的合作者Vicol通过使用均质化正式化重新归一化组的论点来取得了最新的进展。这指向了进一步可能性的方法,包括构建更现实的异常扩散例子。另一个潜在的应用在于欧几里得田间理论,遵循一种随机量化方法来研究吉布斯措施。该奖项反映了NSF的法定任务,并使用基金会的智力优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Armstrong其他文献
The mutation in miR-128b blocks processing and induces functional consequences
miR-128b 的突变会阻碍加工并引发功能性后果
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish;Ai Kotani - 通讯作者:
Ai Kotani
The mutation in microRNA gene is important in tumor biology
microRNA基因突变在肿瘤生物学中很重要
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish - 通讯作者:
and Harvey Lodish
miR-128 plays important roles in MLL related leukemia
miR-128在MLL相关白血病中发挥重要作用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Daon Ha;Prakash Rao;Gregory Hyde;Scott Armstrong;and Harvey F.Lodish - 通讯作者:
and Harvey F.Lodish
Predicting Elections from Biographical Information about Candidates
根据候选人的传记信息预测选举
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Scott Armstrong;A. Graefe - 通讯作者:
A. Graefe
Can antitakeover activity really create wealth? Evidence from Australia
反收购活动真的能创造财富吗?
- DOI:
10.1007/bf01739206 - 发表时间:
1994 - 期刊:
- 影响因子:5.4
- 作者:
Scott Armstrong;Helen P. Lange;L. Woo - 通讯作者:
L. Woo
Scott Armstrong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Armstrong', 18)}}的其他基金
Renormalization in Statistical Mechanics and Partial Differential Equations
统计力学和偏微分方程的重整化
- 批准号:
1954357 - 财政年份:2020
- 资助金额:
$ 44.44万 - 项目类别:
Continuing Grant
Quantitative Stochastic Homogenization and Renormalization Methods
定量随机均匀化和重正化方法
- 批准号:
2000200 - 财政年份:2020
- 资助金额:
$ 44.44万 - 项目类别:
Standard Grant
Quantitative Methods for Modeling Properties of Random Media
随机介质属性建模的定量方法
- 批准号:
1700329 - 财政年份:2017
- 资助金额:
$ 44.44万 - 项目类别:
Continuing Grant
相似国自然基金
转座子插入变异对大白菜叶球性状形成的作用规律
- 批准号:32302552
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小麦DNA大片段精准定点插入体系的建立及应用
- 批准号:32370432
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IL-10基因启动子区GAGTT插入/缺失变异影响草鱼出血病抗性的作用机理
- 批准号:32302993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有机小分子插入共价有机框架调控电化学发光性能及对铀的分析新方法研究
- 批准号:22376023
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
碳青霉烯高度耐药肺炎克雷伯菌的基因表达和插入元件对表型的影响研究
- 批准号:82360407
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
$ 44.44万 - 项目类别:
Continuing Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 44.44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory and Application of Coarse Graining
粗粒度理论与应用
- 批准号:
RGPIN-2021-03852 - 财政年份:2022
- 资助金额:
$ 44.44万 - 项目类别:
Discovery Grants Program - Individual
Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
- 批准号:
22K03596 - 财政年份:2022
- 资助金额:
$ 44.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
- 批准号:
22K13974 - 财政年份:2022
- 资助金额:
$ 44.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists