Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology

任意拓扑流形上几何偏微分方程的数值方法

基本信息

  • 批准号:
    1620366
  • 负责人:
  • 金额:
    $ 21.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the approximate solution of systems of stationary and evolution partial differential equations (PDE) arising at the intersection of mathematical physics and geometric analysis. Such systems of equations, known as Geometric PDE, appear in a wide range of physical and mathematical problems; one of the primary motivations for this project is the Einstein, which are of central importance to gravitational wave science. One of the most challenging features of this class of problems, for both mathematical analysis and computational simulation, is the underlying spatial domain which has the structure of a potentially complicated manifold rather than a simple shape in 3-space. Moreover, both the geometry and the topology of this manifold may evolve over time, depending on the particular model. The research results will have a broad impact on areas of mathematics such as geometric analysis, as well as in astrophysics and general relativity. The methods developed will contribute to the advancement of numerical methods for complex three-dimensional constrained nonlinear dynamical simulations. The simulation technology the PIs produce will provide powerful tools for the exploration of models in astrophysics and relativity as well as in some areas of pure mathematics such as geometric analysis. The two graduate students involved in the project will be co-trained by both investigators; this will involve regular interaction between all four members of the team.The primary technical aim of this project is to develop a general approximation theory framework, together with reliable and provably convergent adaptive methods, for the intrinsic discretization of a general class of nonlinear geometric elliptic and evolution PDE on Riemannian 2- and 3-manifolds. While the solution theory for this class of PDE has been intensively studied over the last thirty years, progress on the development of robust numerical methods with a corresponding approximation theory has been a more recent development. Most of the approaches to date, such as surface finite element methods for two-dimensional problems, are based on exploiting the embedding of the surface into 3-dimension. For applications such as general relativity, a more general approach is needed that does not rely on the existence of such an embedding. In this project, the PIs will study the development of truly intrinsic discretizations that use no extrinsic information to produce a discretization, to allow for the development of numerical methods on Riemannian 2- and 3-manifolds with arbitrary topology. The PIs' approach is to develop an atlas-based discretization using techniques such as the multi-cube framework and the local simplex approximation techniques developed by the project team. To develop a corresponding error analysis framework, the PIs will exploit the variational crimes framework for methods in surfaces, such as methods based on finite element exterior calculus.
该项目涉及数学物理和几何分析交叉领域中出现的平稳和演化偏微分方程(PDE)系统的近似解。这种方程组,称为几何偏微分方程,出现在广泛的物理和数学问题中。该项目的主要动机之一是爱因斯坦,它对引力波科学至关重要。对于数学分析和计算模拟来说,此类问题最具挑战性的特征之一是底层空间域,它具有潜在复杂流形的结构,而不是 3 空间中的简单形状。此外,该流形的几何形状和拓扑结构都可能随着时间的推移而演变,具体取决于特定的模型。研究成果将对几何分析等数学领域以及天体物理学和广义相对论产生广泛影响。所开发的方法将有助于复杂三维约束非线性动力学模拟数值方法的进步。 PI 开发的模拟技术将为探索天体物理学和相对论以及几何分析等纯数学领域的模型提供强大的工具。参与该项目的两名研究生将由两位研究者共同培养;这将涉及团队所有四名成员之间的定期互动。该项目的主要技术目标是开发一个通用逼近理论框架,以及可靠且可证明收敛的自适应方法,用于一般类非线性几何椭圆的内在离散化黎曼 2 流形和 3 流形上的演化偏微分方程。 虽然此类偏微分方程的解理论在过去三十年中得到了深入研究,但鲁棒数值方法及其相应的近似理论的发展却是最近才取得的进展。迄今为止的大多数方法,例如用于二维问题的表面有限元方法,都是基于利用表面嵌入到 3 维中。对于广义相对论等应用,需要一种不依赖于这种嵌入的存在的更通用的方法。在该项目中,PI 将研究真正内在离散化的发展,这种离散化不使用外在信息来产生离散化,从而允许开发具有任意拓扑的黎曼 2 流形和 3 流形的数值方法。 PI 的方法是使用项目团队开发的多立方体框架和局部单纯形近似技术等技术来开发基于图集的离散化。为了开发相应的误差分析框架,PI 将利用表面方法的变分犯罪框架,例如基于有限元外微积分的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Holst其他文献

MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu
  • 通讯作者:
    Yunrong Zhu
Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
具有表观视界边界的紧流形上爱因斯坦约束方程的非CMC解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Holst;Caleb Meier;G. Tsogtgerel
  • 通讯作者:
    G. Tsogtgerel
NEWEST VERTEX BISECTION OVER GENERAL TRIANGULATIONS
一般三角剖分的最新顶点二分法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Holst;M. Licht;Zhao Lyu
  • 通讯作者:
    Zhao Lyu

Michael Holst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Holst', 18)}}的其他基金

Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2132896
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
  • 批准号:
    1262982
  • 财政年份:
    2013
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
  • 批准号:
    1217175
  • 财政年份:
    2012
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065972
  • 财政年份:
    2011
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
  • 批准号:
    0821816
  • 财政年份:
    2008
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715146
  • 财政年份:
    2007
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
  • 批准号:
    0619173
  • 财政年份:
    2006
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
  • 批准号:
    0411723
  • 财政年份:
    2004
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant

相似国自然基金

磁场作用下复杂几何腔体内液态金属混合对流稳定性的数值研究
  • 批准号:
    11872151
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
陶瓷材料热震裂纹几何边界效应的实验研究与数值预报
  • 批准号:
    11802033
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
面向多孔点阵材料与结构动力学特性分析的等几何流形元法研究
  • 批准号:
    11602004
  • 批准年份:
    2016
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
基于几何精确理论的大变形柔性多体系统动力学变分李群模型及算法
  • 批准号:
    11472144
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目
C/SiC编织复合材料的热-力-氧耦合理论与三维几何重构方法
  • 批准号:
    11402132
  • 批准年份:
    2014
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Numerical Integration Methods for Differential-Algebraic Equations and Their Application to Evolutionary Equations
微分代数方程的几何数值积分方法及其在演化方程中的应用
  • 批准号:
    19K23399
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了