Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology

任意拓扑流形上几何偏微分方程的数值方法

基本信息

  • 批准号:
    1620366
  • 负责人:
  • 金额:
    $ 21.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the approximate solution of systems of stationary and evolution partial differential equations (PDE) arising at the intersection of mathematical physics and geometric analysis. Such systems of equations, known as Geometric PDE, appear in a wide range of physical and mathematical problems; one of the primary motivations for this project is the Einstein, which are of central importance to gravitational wave science. One of the most challenging features of this class of problems, for both mathematical analysis and computational simulation, is the underlying spatial domain which has the structure of a potentially complicated manifold rather than a simple shape in 3-space. Moreover, both the geometry and the topology of this manifold may evolve over time, depending on the particular model. The research results will have a broad impact on areas of mathematics such as geometric analysis, as well as in astrophysics and general relativity. The methods developed will contribute to the advancement of numerical methods for complex three-dimensional constrained nonlinear dynamical simulations. The simulation technology the PIs produce will provide powerful tools for the exploration of models in astrophysics and relativity as well as in some areas of pure mathematics such as geometric analysis. The two graduate students involved in the project will be co-trained by both investigators; this will involve regular interaction between all four members of the team.The primary technical aim of this project is to develop a general approximation theory framework, together with reliable and provably convergent adaptive methods, for the intrinsic discretization of a general class of nonlinear geometric elliptic and evolution PDE on Riemannian 2- and 3-manifolds. While the solution theory for this class of PDE has been intensively studied over the last thirty years, progress on the development of robust numerical methods with a corresponding approximation theory has been a more recent development. Most of the approaches to date, such as surface finite element methods for two-dimensional problems, are based on exploiting the embedding of the surface into 3-dimension. For applications such as general relativity, a more general approach is needed that does not rely on the existence of such an embedding. In this project, the PIs will study the development of truly intrinsic discretizations that use no extrinsic information to produce a discretization, to allow for the development of numerical methods on Riemannian 2- and 3-manifolds with arbitrary topology. The PIs' approach is to develop an atlas-based discretization using techniques such as the multi-cube framework and the local simplex approximation techniques developed by the project team. To develop a corresponding error analysis framework, the PIs will exploit the variational crimes framework for methods in surfaces, such as methods based on finite element exterior calculus.
该项目与在数学物理学和几何分析的交集中产生的固定和进化部分微分方程(PDE)系统的近似解决方案有关。这样的方程系统(称为几何PDE)出现在各种物理和数学问题中。该项目的主要动机之一是爱因斯坦,这对于引力波科学至关重要。对于数学分析和计算模拟而言,这类问题的最具挑战性特征之一是基本的空间域,它具有潜在的复杂流形的结构,而不是3个空间中的简单形状。此外,根据特定模型的不同,该流形的几何形状和拓扑都可能随着时间的流逝而发展。研究结果将对数学领域(例如几何分析)以及天体物理学和总体相对论产生广泛的影响。开发的方法将有助于进步数值方法,用于复杂的三维约束非线性动力学模拟。 PIS生产的模拟技术将为探索天体物理学和相对论模型以及在纯数学(例如几何分析)的某些领域提供强大的工具。参与该项目的两名研究生将由两位调查人员共同培训。这将涉及团队的所有四个成员之间的定期互动。该项目的主要技术目的是开发一个一般近似理论框架,以及可靠且可靠的自适应方法,以对Riemannian 2-和3-manifolds上的一般非线性几何椭圆形和进化PDE进行内在离散化。 尽管在过去的三十年中,对这类PDE的解决方案理论进行了深入的研究,但具有相应近似理论的强大数值方法的发展的进展一直是最新的发展。迄今为止,大多数方法(例如用于二维问题的表面有限元方法)是基于将表面嵌入到三维中的基础。对于诸如一般相对论之类的应用程序,需要一种更通用的方法,不依赖于这种嵌入的存在。在该项目中,PI将研究真正固有的离散化的开发,这些离散化不使用外部信息来产生离散化,以允许开发有关具有任意拓扑的Riemannian 2和3个manifords的数值方法。 PIS的方法是使用项目团队开发的多立方体框架和局部单纯形近似技术等技术开发基于ATLAS的离散化。为了开发相应的误差分析框架,PIS将利用表面中方法的变异犯罪框架,例如基于有限元外部计算的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Holst其他文献

Effects of Membrane Calcium Flux Localizations and Realistic T-Tubule Geometry on Cardiac Excitation-Contraction Coupling
  • DOI:
    10.1016/j.bpj.2009.12.2985
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuhui Cheng;Zeyun Yu;Masahiko Hoshijima;Michael Holst;Andrew McCulloch;Andrew McCammon;Anushka Michailova
  • 通讯作者:
    Anushka Michailova
MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu
  • 通讯作者:
    Yunrong Zhu
Modeling the Impact of Spine Apparatus on Signaling and Regulation in Realistic Dendritic Spine Geometries
  • DOI:
    10.1016/j.bpj.2018.11.1303
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Justin G. Laughlin;Christopher T. Lee;J. Andrew McCammon;Rommie E. Amaro;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani
Correlating Dendritic Spine Geometry and Calcium Transients to Learning and Information Processing
  • DOI:
    10.1016/j.bpj.2019.11.1632
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher T. Lee;Justin G. Laughlin;Miriam Bell;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani
Modeling Actin Networks in Realistic Geometries of Dendritic Spines
  • DOI:
    10.1016/j.bpj.2019.11.2451
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Nguyen;Justin L. Oshiro;Christopher T. Lee;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani

Michael Holst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Holst', 18)}}的其他基金

Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2132896
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
  • 批准号:
    1262982
  • 财政年份:
    2013
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
  • 批准号:
    1217175
  • 财政年份:
    2012
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065972
  • 财政年份:
    2011
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
  • 批准号:
    0821816
  • 财政年份:
    2008
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715146
  • 财政年份:
    2007
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
  • 批准号:
    0619173
  • 财政年份:
    2006
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
  • 批准号:
    0411723
  • 财政年份:
    2004
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant

相似国自然基金

陶瓷材料热震裂纹几何边界效应的实验研究与数值预报
  • 批准号:
    11802033
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
磁场作用下复杂几何腔体内液态金属混合对流稳定性的数值研究
  • 批准号:
    11872151
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面向多孔点阵材料与结构动力学特性分析的等几何流形元法研究
  • 批准号:
    11602004
  • 批准年份:
    2016
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
基于几何精确理论的大变形柔性多体系统动力学变分李群模型及算法
  • 批准号:
    11472144
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目
C/SiC编织复合材料的热-力-氧耦合理论与三维几何重构方法
  • 批准号:
    11402132
  • 批准年份:
    2014
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Numerical Integration Methods for Differential-Algebraic Equations and Their Application to Evolutionary Equations
微分代数方程的几何数值积分方法及其在演化方程中的应用
  • 批准号:
    19K23399
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了