Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
基本信息
- 批准号:RGPIN-2016-03922
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A fundamental change is taking place in the role of applied and computational mathematics.
Across science, technology, commerce, and medicine our ability to collect and store data is increasing dramatically. These developments call for a change in our understanding of data and demand the development of new tools. The techniques of computational mathematics are uniquely suited for building these tools.
I propose to build new algorithms for large data sets and apply these algorithms to solve important real-world problems. The primary objectives are to:
1. Develop an extension of my algorithm for solving the Optimal Transportation (OT) problem. One of the fundamental tools of mathematics is impose a metric structure on complex sets. The Wasserstein distance does so for the set of probability measures. However, evaluating this distance is not given explicitly: it is obtained as the solution of an infinite dimensional variational problem, the Optimal Transportation problem. Building good methods for solving this problem allow this distance to be computed.
2. Develop an algorithm for data reduction using extremal points. Given a scatterplot of two dimensional points, the extremal values are the farthest out from the centre. Mathematically, the convex hull is used to represent the extremal values. There are already algorithms for finding convex hulls, but they break down when the number of points, or the dimension of the points, is too large. The proposed research will develop algorithms to find extremal points of large set of high dimensional data.
3. Develop an algorithm, Multidimensional Quicksort, for anomaly detection. You may perform anomaly detection when you check your monthly credit card bill. For example, looking for items that are unusual, either because of the amount charged, or because the vendor is not recognized. The proposed research will develop algorithms to perform anomaly detection on huge amounts of data very quickly. The data is simplified by using a density function, which represents the pattern of the types of anomalies we are looking for. The process of sorting the points is replaced by solving an equation involving the density function. Once we have the solution of the equation, we can use it to quickly find the anomalies.
4. Continue foundational work building of nonlinear Partial Differential Equation (PDE) solvers.
The corresponding expected outcomes include:
1.(a) An effective method to compare documents or images.
(b) A geometry-sensitive method to perform registration of shapes or images.
(c) A state-of-the-art image warping tool, to be used by several top surgeons at US hospitals.
2.(a) A data reduction tool for finding extreme values of high dimensional data.
(b) Improved off-line and potential real-time performance monitoring for helicopters.
3. Streaming detection of stock anomalies.
4. Effective solvers for new equations, leading to future outcomes like 1-3 above.
应用数学和计算数学的作用正在发生根本性的变化。
在科学、技术、商业和医学领域,我们收集和存储数据的能力正在急剧增强。这些发展要求我们改变对数据的理解,并需要开发新工具。计算数学技术特别适合构建这些工具。
我建议为大数据集构建新算法,并应用这些算法来解决重要的现实问题。主要目标是:
1. 开发我的算法的扩展来解决最佳运输 (OT) 问题。数学的基本工具之一是将度量结构强加于复杂的集合上。 Wasserstein 距离对概率度量集执行此操作。 然而,没有明确给出对该距离的评估:它是作为无限维变分问题(最优运输问题)的解而获得的。 建立解决该问题的良好方法可以计算该距离。
2. 开发一种使用极值点进行数据缩减的算法。给定二维点的散点图,极值是距中心最远的值。在数学上,凸包用于表示极值。已经有寻找凸包的算法,但是当点的数量或点的维度太大时,它们就会崩溃。拟议的研究将开发算法来查找大量高维数据的极值点。
3. 开发一种用于异常检测的算法,多维快速排序。您可以在检查每月信用卡账单时执行异常检测。例如,寻找不寻常的物品,要么是因为收费金额,要么是因为供应商不被认可。拟议的研究将开发算法来非常快速地对大量数据执行异常检测。通过使用密度函数来简化数据,密度函数代表我们正在寻找的异常类型的模式。对点进行排序的过程被求解涉及密度函数的方程所取代。一旦我们得到了方程的解,我们就可以用它来快速找到异常现象。
4. 继续建立非线性偏微分方程 (PDE) 求解器的基础工作。
相应的预期成果包括:
1.(a) 比较文档或图像的有效方法。
(b) 一种几何敏感方法,用于执行形状或图像的配准。
(c) 最先进的图像变形工具,将由美国医院的几位顶级外科医生使用。
2.(a) 一种用于查找高维数据极值的数据缩减工具。
(b) 改进直升机的离线和潜在实时性能监测。
3.库存异常的流式检测。
4. 新方程的有效求解器,导致未来的结果,如上面的 1-3。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oberman, Adam其他文献
Deep relaxation: partial differential equations for optimizing deep neural networks
- DOI:
10.1007/s40687-018-0148-y - 发表时间:
2018-06-28 - 期刊:
- 影响因子:1.2
- 作者:
Chaudhari, Pratik;Oberman, Adam;Carlier, Guillaume - 通讯作者:
Carlier, Guillaume
ANISOTROPIC TOTAL VARIATION REGULARIZED L1 APPROXIMATION AND DENOISING/DEBLURRING OF 2D BAR CODES
- DOI:
10.3934/ipi.2011.5.591 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:1.3
- 作者:
Choksi, Rustum;van Gennip, Yves;Oberman, Adam - 通讯作者:
Oberman, Adam
NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS
- DOI:
10.1051/m2an/2015033 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:0
- 作者:
Carlier, Guillaume;Oberman, Adam;Oudet, Edouard - 通讯作者:
Oudet, Edouard
A REGULARIZATION INTERPRETATION OF THE PROXIMAL POINT METHOD FOR WEAKLY CONVEX FUNCTIONS
- DOI:
10.3934/jdg.2020005 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Hoheisel, Tim;Laborde, Maxime;Oberman, Adam - 通讯作者:
Oberman, Adam
Oberman, Adam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oberman, Adam', 18)}}的其他基金
Principled approaches to deep learning: generalization under distribution shift and predictive uncertainty
深度学习的原则方法:分布变化和预测不确定性下的泛化
- 批准号:
RGPIN-2022-03609 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
High Dimensional Data Reduction using approximate Convex Hulls
使用近似凸包进行高维数据缩减
- 批准号:
486596-2015 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
非线性随机系统的显式数值方法
- 批准号:12371402
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
若干非线性偏微分方程的数值方法设计和分析
- 批准号:12371408
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性对流扩散方程基于广义数值流通量的局部间断有限元方法
- 批准号:12371365
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性磁热耦合系统的数值方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性波动方程组的高精度高效保物理特性的数值方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant