Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
基本信息
- 批准号:2309687
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project aims to develop fast and reliable algorithms for simulating waves, capable of exploiting current and future computing technology and of treating a wide range of mathematical models of physical systems. Wave phenomena are important in almost all areas of the physical sciences and engineering. They are central to sensing and imaging applications, to the modeling of potential natural disasters such as earthquakes, and to humanity's quest to understand the universe. In the longer term, the algorithms developed will be incorporated into software to promote their broad use. Besides contributions to basic tools for solving comprehensive models of wave physics, the project will result in the training of three graduate students in computational science, supported in part as funded research assistants, and in the further development of transdisciplinary programs in research and education which involve computation as an important component. The main challenges to computational technique posed by problems in wave theory are rooted in the multiple temporal and spatial scales which typically occur. The fundamental fact that a wave propagates over many wavelengths without significant attenuation leads to the requirement that numerical methods must have minimal dispersion and dissipation errors and that the computational domain must be limited using accurate approximate radiation boundary conditions. In addition, the waves may interact with complex geometrical objects with their own inherent length scales. The project will address all of these issues. Building on previous success in developing optimal rational approximations to radiation boundary conditions for linear hyperbolic problems in uniform media, reduced order modeling algorithms will be used to construct effective methods for problems with Coulomb potentials, in periodic media, in multiscale media, and for Schrodinger-type equations. The investigator will improve the efficiency of their discretization methods, which are robust, due to energy stability, have arbitrary convergence orders for smooth solutions, and are capable of treating general second-order hyperbolic systems arising from action principles. Specifically, the research will develop higher order local time-stepping schemes to more efficiently treat locally refined and hybrid meshes and will exercise their methods on interesting physical problems, including gravitational and topological waves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发快速可靠的波浪模拟算法,能够利用当前和未来的计算技术并处理各种物理系统的数学模型。波动现象在物理科学和工程学的几乎所有领域都很重要。它们对于传感和成像应用、地震等潜在自然灾害的建模以及人类探索宇宙的探索至关重要。从长远来看,开发的算法将被纳入软件中以促进其广泛使用。除了为解决波物理综合模型的基本工具做出贡献外,该项目还将培训三名计算科学研究生,部分作为资助的研究助理提供支持,并进一步发展跨学科的研究和教育项目,其中涉及计算作为重要组成部分。波动理论问题对计算技术带来的主要挑战根源于通常发生的多个时间和空间尺度。波在多个波长上传播而没有显着衰减的基本事实导致要求数值方法必须具有最小的色散和耗散误差,并且必须使用精确的近似辐射边界条件来限制计算域。此外,波可能与具有其固有长度尺度的复杂几何物体相互作用。该项目将解决所有这些问题。基于先前在均匀介质中线性双曲问题的辐射边界条件的最佳有理逼近方面取得的成功,降阶建模算法将用于构建库仑势问题、周期性介质、多尺度介质和薛定谔问题的有效方法。类型方程。研究人员将提高其离散化方法的效率,这些方法由于能量稳定而具有鲁棒性,具有任意收敛阶以实现平滑解,并且能够处理由作用原理产生的一般二阶双曲系统。具体来说,该研究将开发更高阶的局部时间步进方案,以更有效地处理局部细化和混合网格,并将在有趣的物理问题上运用他们的方法,包括引力波和拓扑波。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hagstrom其他文献
Thomas Hagstrom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hagstrom', 18)}}的其他基金
Numerical Methods for Waves: Nonlocal, Nonlinear, and Multiscale Systems
波的数值方法:非局部、非线性和多尺度系统
- 批准号:
2012296 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Robust High-Order Methods for Wave Equations in the Time Domain
时域波动方程的鲁棒高阶方法
- 批准号:
1418871 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Simulation and Analysis of Turbulent Jet Noise Using Arbitrary-Order Hermite Methods
合作研究:使用任意阶 Hermite 方法模拟和分析湍流射流噪声
- 批准号:
0904773 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0929241 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0610067 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Numerical Methods for Multiple Scale Problems in Wave Propagation: Efficient Approximation of Integral Operators in the Time Domain
波传播中多尺度问题的数值方法:时域积分算子的有效逼近
- 批准号:
0306285 - 财政年份:2003
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
New Methods for the Simulation and Analysis of Waves
波浪模拟和分析的新方法
- 批准号:
9971772 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Scientific Computing Research Environments in the Mathematical Sciences
数学科学中的科学计算研究环境
- 批准号:
9977396 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Analysis of Multiple Scales Problems in Wave Propagation
数学科学:波传播中多尺度问题的计算分析
- 批准号:
9600146 - 财政年份:1996
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Scientific Computing Research Developments for the Mathematical Sciences
数学科学的科学计算研究进展
- 批准号:
9508285 - 财政年份:1995
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
半数值半AI的高效率高精度车载毫米波雷达回波智能电磁仿真技术研究
- 批准号:62301146
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电磁场方程在超材料介质中的高效数值方法及其应用
- 批准号:12301492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
新型裂缝性多孔介质模型的高效数值模拟及其应用
- 批准号:12371416
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
高维结构协方差矩阵的稳健估计及其高效数值算法研究
- 批准号:12301346
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:
20K14356 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Robust machine learning: algorithms, numerical analysis and efficient software
强大的机器学习:算法、数值分析和高效软件
- 批准号:
2278824 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Studentship
Efficient and robust algorithms for hard, large scale, numerical optimization
用于硬大规模数值优化的高效且稳健的算法
- 批准号:
9161-2007 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Development of robust and efficient algorithms in numerical linear algebra
开发稳健且高效的数值线性代数算法
- 批准号:
23700023 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)