Numerical Methods for Waves: Nonlocal, Nonlinear, and Multiscale Systems

波的数值方法:非局部、非线性和多尺度系统

基本信息

  • 批准号:
    2012296
  • 负责人:
  • 金额:
    $ 34.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The reliable simulation of complex physical phenomena can benefit society and help satisfy human curiosity in countless ways. Examples range from the very small, such as the design of nanoscale devices and emerging applications of quantum systems, to the very large, such as natural disasters caused by earthquakes and tsunamis, as well as our understanding of the dynamics and evolution of the cosmos. Although computational capabilities are increasing, with a push towards exascale systems, the computer hardware itself is becoming more heterogeneous and difficult to use efficiently, and the challenges posed by the models one wishes to solve are also rapidly growing. The need to develop and deploy better algorithms is urgent if the tremendous promise of the new computing technologies is to be realized. This research program is focused on the invention of new fast and accurate methods for solving comprehensive models of physical systems where wave propagation plays a central role, with applications throughout the range of problems outlined above.A primary obstacle to simulating waves is the multiscale nature of most applied problems. On the one hand, the defining feature of waves is their ability to propagate long distances relative to their wavelength, effectively leading to problems posed on unbounded domains. On the other, waves interact with media that may vary at or below the wavelength scale. A central theme in such models is the appearance of nonlocal operators; one main goal of the project is the construction of fast, accurate, and memory-efficient algorithms to evaluate them. This includes the development of (i) effective and mathematically justified domain truncation algorithms for general wave propagation problems, which at present are only available for a limited class of systems, (ii) methods for numerically constructing accurate reduced-order models of wave propagation in the presence of subwavelength variations in material properties, capable of efficiently treating engineered materials without assumptions of scale separation or periodicity, and (iii) low-memory algorithms for fractional and other operator functions. The second goal of this project is the extension of robust and efficient discretization schemes to second-order nonlinear wave equations derived from action principles, yielding, in particular, new methods to solve equations arising in general relativity and gauge theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的物理现象的可靠模拟可以使社会受益,并以无数方式满足人类的好奇心。示例范围从非常小的范围,例如纳米级设备的设计和量子系统的新兴应用到非常大的,例如由地震和海啸引起的自然灾害,以及我们对宇宙动力学和演变的理解。尽管计算能力正在增加,随着推动Exascale系统的推动,计算机硬件本身正在变得越来越多,并且难以有效使用,并且希望解决的模型所带来的挑战也在迅速增长。如果要实现新计算技术的巨大希望,则需要开发和部署更好的算法。该研究计划的重点是新的快速准确方法的发明,用于求解物理系统的全面模型,其中波传播起着核心作用,在上面概述的整个问题范围内应用。模拟波的主要障碍是大多数应用问题的多阶段性质。一方面,波的定义特征是它们相对于波长的长距离传播的能力,有效地导致了在无限域中构成的问题。另一方面,波与可能在波长尺度下或低于波长的介质相互作用。这种模型中的一个核心主题是非本地运营商的外观。该项目的主要目标是构建快速,准确和记忆效率的算法以评估它们。这包括(i)开发(i)有效和数学合理的一般波浪传播问题的域截断算法,目前仅适用于有限类别的系统,(ii)在数值构建波浪繁殖准确降低的材料中的材料和材料分离的材料分离的材料差异的情况下,在数值上构建波浪传播的准确降低级别的模型,该模型是有效的,该材料的分离率或有效地分离的材料(量表)量度分离的材料(量表)的分离量,或者是有效的量表。分数和其他操作员功能的算法。该项目的第二个目标是将强大和有效的离散方案扩展到二阶非线性波动方程,从行动原理中得出,尤其是在求解一般相对论和规格理论中求解方程的新方法。该奖项反映了NSF的法定任务,并通过评估了基金会的概述,并通过评估了基金会的范围和广泛的范围。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discontinuous Galerkin Galerkin Differences for the Wave Equation in Second-Order Form
二阶形式波动方程的间断伽辽金伽辽金差分
  • DOI:
    10.1137/20m1328671
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Banks, J. W.;Buckner, B. Brett;Hagstrom, T.;Juhnke, K.
  • 通讯作者:
    Juhnke, K.
An energy-based discontinuous Galerkin method with tame CFL numbers for the wave equation
波动方程中具有温和 CFL 数的基于能量的间断伽辽金方法
  • DOI:
    10.1007/s10543-023-00954-2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Appelö, Daniel;Zhang, Lu;Hagstrom, Thomas;Li, Fengyan
  • 通讯作者:
    Li, Fengyan
Continuous/Discontinuous Galerkin Difference Discretizations of High-Order Differential Operators
  • DOI:
    10.1007/s10915-022-01891-y
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    J. Banks;B. B. Buckner-B.;T. Hagstrom
  • 通讯作者:
    J. Banks;B. B. Buckner-B.;T. Hagstrom
Complete radiation boundary conditions for the Helmholtz equation II: domains with corners
亥姆霍兹方程 II 的完整辐射边界条件:有角的域
  • DOI:
    10.1007/s00211-023-01352-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Hagstrom, Thomas;Kim, Seungil
  • 通讯作者:
    Kim, Seungil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hagstrom其他文献

Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations
  • DOI:
    10.1016/j.jcp.2006.10.002
  • 发表时间:
    2007-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tomáš Dohnal;Thomas Hagstrom
  • 通讯作者:
    Thomas Hagstrom
High-order discretization of a stable time-domain integral equation for 3D acoustic scattering
  • DOI:
    10.1016/j.jcp.2019.109047
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alex Barnett;Leslie Greengard;Thomas Hagstrom
  • 通讯作者:
    Thomas Hagstrom

Thomas Hagstrom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hagstrom', 18)}}的其他基金

Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Robust High-Order Methods for Wave Equations in the Time Domain
时域波动方程的鲁棒高阶方法
  • 批准号:
    1418871
  • 财政年份:
    2014
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulation and Analysis of Turbulent Jet Noise Using Arbitrary-Order Hermite Methods
合作研究:使用任意阶 Hermite 方法模拟和分析湍流射流噪声
  • 批准号:
    0904773
  • 财政年份:
    2009
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
  • 批准号:
    0929241
  • 财政年份:
    2008
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
  • 批准号:
    0610067
  • 财政年份:
    2006
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Numerical Methods for Multiple Scale Problems in Wave Propagation: Efficient Approximation of Integral Operators in the Time Domain
波传播中多尺度问题的数值方法:时域积分算子的有效逼近
  • 批准号:
    0306285
  • 财政年份:
    2003
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
New Methods for the Simulation and Analysis of Waves
波浪模拟和分析的新方法
  • 批准号:
    9971772
  • 财政年份:
    1999
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments in the Mathematical Sciences
数学科学中的科学计算研究环境
  • 批准号:
    9977396
  • 财政年份:
    1999
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Computational Analysis of Multiple Scales Problems in Wave Propagation
数学科学:波传播中多尺度问题的计算分析
  • 批准号:
    9600146
  • 财政年份:
    1996
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Scientific Computing Research Developments for the Mathematical Sciences
数学科学的科学计算研究进展
  • 批准号:
    9508285
  • 财政年份:
    1995
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于深度学习时间反转的物理与数值水池非线性波浪主动吸收造波方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于深度学习时间反转的物理与数值水池非线性波浪主动吸收造波方法研究
  • 批准号:
    52271335
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
海岸带柔性植被环境下波浪动力衰减的数值模拟方法与机理研究
  • 批准号:
    51879043
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
波浪中船舶操纵运动直接数值模拟方法研究
  • 批准号:
    51809169
  • 批准年份:
    2018
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目
复杂海域跨海桥梁围堰随机波浪力作用机理及计算方法研究
  • 批准号:
    51708456
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Numerical Methods for Dynamics of Interfaces and its Applications to Experiments in Science and Engineering
界面动力学数值方法的发展及其在科学与工程实验中的应用
  • 批准号:
    13440038
  • 财政年份:
    2001
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of grobal ultrasonic nondestructive testing methods using surface waves and Lamb waves
表面波和兰姆波全球超声无损检测方法的开发
  • 批准号:
    07555636
  • 财政年份:
    1995
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Development and Application of Advanced Numerical Methods to Outstanding Problems in Experimental Shock Waves Geophysics
数学科学:先进数值方法在实验冲击波地球物理突出问题中的发展和应用
  • 批准号:
    9316529
  • 财政年份:
    1994
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Numerical methods for problems in marine hydrodynamics
海洋流体动力学问题的数值方法
  • 批准号:
    60302055
  • 财政年份:
    1985
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了